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Useful links and implementations

Preprint: https://arxiv.org/abs/2102.12827 
Available implementations:

- https://github.com/pralab/Fast-Minimum-Norm-FMN-Attack 
- https://github.com/bethgelab/foolbox 
- https://github.com/jeromerony/adversarial-library 
- https://github.com/pralab/secml 

Adversarial Robustness Evaluation Key aspects
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Evaluating adversarial robustness amounts 
to finding the minimum norm perturbation 

to have input samples misclassified
ϵ-step (1): decision-based adaptation of the 
search region (increase radius if xi  is not 
adversarial, reduce if xi is adversarial)

𝛅-step (2): follows gradient direction and 
projects in the search region

Limitations of 
currently-available attacks
- they require many iterations 

to converge to good local 
optima;

- they require careful and 
computationally-demanding 
hyperparameter tuning; and

- they are specific to a given 
perturbation model.

Experimental setup
- tested on 9 models (MNIST, CIFAR10, ImageNet)
- compared against 4 state-of-the-art minimum-norm attacks
- evaluated in targeted and untargeted scenario

Evaluation metrics
- median distance found after 1000 queries 
- avg. time per query
- convergence speed
- robustness to hyperparameter choice

Future work

FMN combines desirable traits of minimum-norm attacks to help improve current adversarial evaluations by: 
- finding smaller or comparable minimum-norm perturbations in different ℓp norms;
- being less sensitive to hyperparameter choices; and
- being extremely fast by converging quickly and by performing lightweight steps.

We provide extensive experiments and the open source implementation of the attack.

Extension towards minimum-norm adaptive evaluations.
Improvements that have been suggested for PGD, such as momentum, cyclical step sizes 
and restarts.
Improvements that overcome obfuscated gradients (e.g. gradient smoothing)
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Works in different ℓp norms

ℓ0 norm

ℓ1 norm adversarial examples 
on MNIST challenge model

Median norm of perturbation ||𝛅*||p found for 1000 queries
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