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Useful links and implementations

➔ Open source code https://github.com/pralab/IndicatorsOfAttackFailure

➔ Paper available https://arxiv.org/abs/2106.09947

➔ Implemented with SecML
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Goal:
➔ Find adversarial examples with a 

given perturbation budget
➔ Evaluate the robust accuracy

Problems:
➔ We have to rely on empirical 

evaluations
➔ Attacks often fail
➔ False sense of security
➔ Hard to fix: only guidelines but no 

practical debugging tools available!

Bad implementation
(step 7)

Attack is not converging
(step 4-5)

Bad local optimum
(step 1-2)

Attack is not adaptive
(step 2)

➔ General formalization for untargeted and targeted attacks

➔ We highlight steps related to common failures

Setting:

➔ We select 4 defenses with reported 
failures

➔ We evaluate our indicators

➔ We apply mitigations

Results:

➔ Indicators correctly reveal the “false 
sense of security”

➔ Patched attacks drop robust accuracy

➔ Indicators are strongly correlated with
attacks performance

➔ We formulate 5 quantitative 
indicators (all in [0, 1])

➔ Each indicator is related to one 
or more failure

➔ We also propose 5 mitigations 
to apply, based on indicators 
results

Key Takeaways Future Work

https://secml.gitlab.io/      
Twitter: @secml_py

➔ Empirical evaluation on 4 case-studies
◆ indicators highlight failures
◆ mitigations improve the robustness evaluation

➔ Unified framework for gradient-based attacks and categorization of 
main failures

➔ Framework for debugging faulty-conducted security evaluations with 
quantitative indicators and mitigations strategies

➔ Integration in benchmarks

➔ Add more indicators

➔ Further automatization
◆ Towards MLSecOps
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