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Gradient-based Attacks Attack failures

Adversarial Robustness Evaluation

Problems:

=> We have to rely on empirical
evaluations
Attacks often fail
False sense of security
Hard to fix: only guidelines but no
practical debugging tools available!

=> General formalization for untargeted and targeted attacks Bad implementation Attack is not converging Bad local optimum Attack is not adaptive
(step 7) (step 4-5) (step 2)

Goal:

=> Find adversarial examples with a
given perturbation budget
=> Evaluate the robust accuracy

= We highlight steps related to common failures

Input :x, the initial point; y,, the target (true) class label if the attack 1s targeted (untargeted);
n, the number of iterations; «, the learning rate; f, the target model; (x;, ), the
bounds of the input space; A, the considered region.
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Indicators and mitigations Experiments
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Useful links and implementations Key Takeaways Future Work

- Open source code https://github.com/pralab/IndicatorsOfAttackFailure Unified framework for gradient-based attacks and categorization of - Empirical evaluation on 4 case-studies
SE¢ main failures € indicators highlight failures => Integration in benchmarks

€ mitigations improve the robustness evaluation
https:/ /secml.gitlab.io/ Framework for debugging faulty-conducted security evaluations with > Add more indicators
- Implemented with SecML Twitter: @secml_py quantitative indicators and mitigations strategies

—=> Further automatization

> Paper available https:/ /arxiv.org/abs/2106.09947 € Towards MLSecOps
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