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Artificial Intelligence Today

AI is going to transform industry and business as electricity did about a 
century ago 

(Andrew Ng, Jan. 2017)

Applications:
• Computer vision
• Robotics
• Healthcare
• Speech recognition
• Virtual assistants
• ...
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Computer Vision for Self-Driving Cars

He et al., Mask R-CNN, ICCV ’17, https://arxiv.org/abs/1703.06870
Video from: https://www.youtube.com/watch?v=OOT3UIXZztE 3



But Is AI Really Smart? 
Should We Trust These Algorithms?
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Adversarial Glasses

• Attacks against DNNs for face recognition with carefully-fabricated eyeglass frames

• When worn by a 41-year-old white male (left image), the glasses mislead the deep
network into believing that the face belongs to the famous actress Milla Jovovich

Sharif et al., Accessorize to a crime: Real and stealthy attacks
on state-of-the-art face recognition, ACM CCS 2016 5
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Adversarial Road Signs

Eykholt et al., Robust physical-world attacks on 
deep learning visual classification, CVPR 2018 6
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Audio Adversarial Examples

“without the dataset the article is useless”

“okay google browse to evil dot com”

Transcription by Mozilla DeepSpeechAudio

Carlini and Wagner, Audio adversarial examples: Targeted attacks
on speech-to-text, DLS 2018
https://nicholas.carlini.com/code/audio_adversarial_examples/ 7



How Do These Attacks Work?

8
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Adversarial Examples (AdvX)

9
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Adversarial Examples (AdvX)
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Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014
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Adversarial Examples (AdvX)
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Evasion of Linear Classifiers

• Problem: how to evade a linear (trained) classifier?

Start 2007 with 
a bang!
Make WBFS YOUR 
PORTFOLIO’s
first winner of 
the year
...

start
bang
portfolio
winner
year
...
university
campus

1
1
1
1
1
...
0
0

+6 > 0, SPAM
(correctly classified)

f (x) = sign(wT x)

x

start
bang
portfolio
winner
year
...
university
campus

+2
+1
+1
+1
+1
...
-3
-4

w

x’

St4rt 2007 with 
a b4ng!
Make WBFS YOUR 
PORTFOLIO’s
first winner of 
the year
... campus

start
bang
portfolio
winner
year
...
university
campus

0
0
1
1
1
...
0
1

+3 -4 < 0, HAM
(misclassified email)

f (x) = sign(wT x)
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Evasion of Nonlinear Classifiers

• What if the classifier is nonlinear?

• Decision functions can be arbitrarily complicated, with no clear relationship between
features (x) and classifier parameters (w) −2−1.5−1−0.500.511.5

13
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Detection of Malicious PDF Files
Srndic & Laskov, Detection of malicious PDF files based on hierarchical document structure, NDSS 2013

“The most aggressive evasion strategy we could conceive was successful for 
only 0.025% of malicious examples tested against a nonlinear SVM classifier 
with the RBF kernel [...].

Currently, we do not have a rigorous mathematical explanation for such a 
surprising robustness. Our intuition suggests that [...] the space of true features 
is “hidden behind” a complex nonlinear transformation which is 
mathematically hard to invert. 

[...] the same attack staged against the linear classifier [...] had a 50% success 
rate; hence, the robustness of the RBF classifier must be rooted in its nonlinear 
transformation”

14
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Evasion Attacks against Machine Learning at Test Time

• Main idea: to formalize the attack as an 
optimization problem

• Non-linear, constrained optimization
– Projected gradient descent: approximate

solution for smooth functions

• Gradients of g(x) can be analytically
computed in many cases
– SVMs, Neural networks

−2
−1.5

−1
−0.5

0
0.5

1
1.5

min
!"

𝑔(𝑥")

s. t. 𝑥 − 𝑥" ≤ 𝜀

𝑓 𝑥 = sign 𝑔(𝑥) = ++1,malicious−1, legitimate

𝑥

𝑥′

Biggio et al., Evasion Attacks Against Machine Learning at Test Time, ECML 2013 15
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Computing Descent Directions

Support vector machines

Neural networks
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Biggio et al., Evasion Attacks Against Machine Learning at Test Time, ECML 2013 16
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An Example on Handwritten Digits

• Nonlinear SVM (RBF kernel) to discriminate between ‘3’ and ‘7’
• Features: gray-level pixel values (28 x 28 image = 784 features)

Few modifications are
enough to evade detection!

Before attack (3 vs 7)
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After attack, g(x)=0
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After attack, last iter.

5 10 15 20 25

5

10

15

20

25

0 500
−2

−1

0

1

2
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number of iterations

After attack
(misclassified as 7)

Biggio et al., Evasion Attacks Against Machine Learning at Test Time, ECML 2013 17
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Experiments on PDF Malware Detection

• PDF: hierarchy of interconnected objects (keyword/value pairs)

• Adversary’s capability
– adding up to dmax objects to the PDF
– removing objects may

compromise the PDF file
(and embedded malware code)!

/Type 2
/Page 1
/Encoding 1
…

13 0 obj
<< /Kids [ 1 0 R 11 0 R ]
/Type /Page
... >> end obj
17 0 obj
<< /Type /Encoding
/Differences [ 0 /C0032 ] >>
endobj

Features: keyword count

 min
x '
g(x ')−λp(x ' | y = −1)

  s.t.  d(x, x ') ≤ dmax

         x ≤ x '

18Biggio et al., Evasion Attacks Against Machine Learning at Test Time, ECML 2013
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Experiments on PDF Malware Detection
Linear SVM

• Dataset: 500 malware samples (Contagio), 500 benign (Internet)
– 5-fold cross-validation
– Targeted (surrogate) classifier trained on 500 (100) samples

• Evasion rate (FN) at FP=1% vs max. number of added keywords
– Perfect knowledge (PK); Limited knowledge (LK)

19
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Biggio et al., Evasion Attacks Against Machine Learning at Test Time, ECML 2013



If I can’t break it, it’s robust
WRONG!

20
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Adversarial Examples against Deep Neural Networks

• Szegedy et al. (2014) 
independently developed 
gradient-based attacks 
against DNNs

• They were investigating 
model interpretability, trying 
to understand at which point 
a DNN prediction changes

• They found that the minimum 
perturbations required to trick 
DNNs were really small, even 
imperceptible to humans

Szegedy, Goodfellow et al., Intriguing Properties of NNs, ICLR 2014

+ε =

school bus (94%) ostrich (97%)

input image adversarial perturbation adversarial example

21
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Timeline of Learning Security

Adversarial M
L

2004-2005: pioneering work
Dalvi et al., KDD 2004
Lowd & Meek, KDD 2005

2013: Srndic & Laskov, NDSS

2013: Biggio et al., ECML-PKDD - demonstrated vulnerability of nonlinear algorithms
to gradient-based evasion attacks, also under limited knowledge
Main contributions:
1. gradient-based adversarial perturbations (against SVMs and neural nets)
2. projected gradient descent / iterative attack (also on discrete features from malware data)

transfer attack with surrogate/substitute model
3. maximum-confidence evasion (rather than minimum-distance evasion) 

Main contributions:
- minimum-distance evasion of linear classifiers
- notion of adversary-aware classifiers

2006-2010: Barreno, Nelson, 
Rubinstein, Joseph, Tygar
The Security of Machine Learning
(and references therein)

Main contributions:
- first consolidated view of the adversarial ML problem
- attack taxonomy
- exemplary attacks against some learning algorithms

2014: Szegedy et al., ICLR
Independent discovery of (gradient-

based) minimum-distance adversarial 
examples against deep nets; earlier 

implementation of adversarial training 

Security of DNNs

2016: Papernot et al., IEEE S&P
Framework for security evalution of 

deep nets

2017: Papernot et al., ASIACCS
Black-box evasion attacks with 

substitute models (breaks distillation 
with transfer attacks on a smoother 

surrogate classifier)

2017: Carlini & Wagner, IEEE S&P
Breaks again distillation with 

maximum-confidence evasion attacks 
(rather than using minimum-distance 

adversarial examples)

2016: Papernot et al., Euro S&P
Distillation defense (gradient masking)

Main contributions:
- evasion of linear PDF malware detectors
- claims nonlinear classifiers can be more secure

2014: Biggio et al., IEEE TKDE Main contributions:
- framework for security evaluation of learning algorithms
- attacker’s model in terms of goal, knowledge, capability

2017: Demontis et al., IEEE TDSC
Yes, Machine Learning Can Be 
More Secure! A Case Study on 
Android Malware Detection

Main contributions:
- Secure SVM against adversarial examples in malware 

detection

2017: Grosse et al., ESORICS
Adversarial examples for

malware detection

2018: Madry et al., ICLR
Improves the basic iterative attack from 

Kurakin et al. by adding noise before 
running the attack; first successful use of 

adversarial training to generalize across 
many attack algorithms

2014: Srndic & Laskov, IEEE S&P
used Biggio et al.’s ECML-PKDD ‘13 gradient-based evasion attack to demonstrate 
vulnerability of nonlinear PDF malware detectors

2006: Globerson & Roweis, ICML
2009: Kolcz et al., CEAS
2010: Biggio et al., IJMLC

Main contributions:
- evasion attacks against linear classifiers in spam filtering

Work on security evaluation of learning algorithms

Work on evasion attacks  (a.k.a. adversarial examples)

Pioneering work on adversarial machine learning

... in malware detection (PDF / Android)

Legend

1

2

3

4

1
2
3
4

2015: Goodfellow et al., ICLR
Maximin formulation of adversarial 
training, with adversarial examples 

generated iteratively in the inner loop

2016: Kurakin et al.
Basic iterative attack with projected 

gradient to generate adversarial examples

2 iterative attacks

Biggio and Roli, Wild Patterns: Ten Years 
After The Rise of Adversarial Machine 
Learning, Pattern Recognition, 2018

2021 Best Paper Award and Pattern 
Recognition Medal

22
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Attacks against Machine Learning

Integrity Availability Privacy / Confidentiality

Test data Evasion (a.k.a. adversarial
examples)

Sponge Attacks Model extraction / stealing  
Model inversion (hill climbing)
Membership inference

Training data Backdoor/targeted poisoning (to 
allow subsequent intrusions) –
e.g., backdoors or neural trojans

Indiscriminate (DoS) 
poisoning (to maximize
test error)

Sponge Poisoning

-

Attacker’s Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

Reference slides about the other attacks can be found at the end of the presentation

Biggio and Roli, Wild Patterns, Patt. Rec. 2018, Best paper award and PR medal 2021

Misclassifications that do 
not compromise normal 
system operation

Misclassifications that 
compromise normal 
system operation

Attacker’s Goal

Attacker’s Capability

Querying strategies that reveal 
confidential information on the 
learning model or its users

23
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ML Security Exploded...
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

24
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An unified view of Evasion attacks

Minimize the score, 
cause misclassification 
in model

min[𝐿 𝑥 + 𝛿, 𝑦; 𝜃 , 𝛿 !]

Minimize the 
perturbation w.r.t. L-p 
norm

25
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Pareto Frontier
𝐿
𝑥
+
𝛿,
𝑦;
𝜃

𝛿 #

Trade-off between misclassification 
confidence and perturbation size 
Pareto-optimal solutions with 
different trade-offs are found along 
the blue curve (Pareto frontier) 

26
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Hard-constraint: maximum confidence attacks
𝐿
𝑥
+
𝛿,
𝑦;
𝜃

𝛿 #

Minimize loss of the attack to cause 
misclassifiation (FGSM, PGD)

The perturbation is checked as hard 
constraint, bound on maximum 
manipulation

Robust accuracy = accuracy with a 
certain perturbation budget

min 𝐿 𝑥 + 𝛿, 𝑦; 𝜃 ,
𝑠. 𝑡. 𝛿 # < 𝜖

𝜖

27
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Hard-constraint: minimum-norm attacks

Minimize perturbation w.r.t. Lp norm

Score is used only as a constraint, not 
optimized

Hard to solve directly – normally a soft-
constraint is used instead

min 𝛿 #
𝑠. 𝑡. 𝐿 𝑥 + 𝛿, 𝑦; 𝜃 < 𝑡

𝐿
𝑥
+
𝛿,
𝑦;
𝜃

𝛿 #

𝑡

28
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Soft-constraint: mixing the problems to solve

All constraints are imposed as 
quantities modulated by coefficients, 
behaving as regularizers

Modulating the multipliers shifts the 
solution towards trade-off between 
score and distance

𝐿
𝑥
+
𝛿,
𝑦;
𝜃

𝛿 #

min 𝐿 𝑥 + 𝛿, 𝑦; 𝜃 + 𝑐 𝛿 #

𝑐$
𝑐%

𝑐&

29
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Fast Minimum-Norm (FMN) Attacks (Pintor, Biggio et al., NeurIPS ‘21)

Biggio et al., 2013
Szegedy et al., 2014 
Goodfellow et al., 2015 (FGSM)
Papernot et al., 2015 (JSMA)
Carlini & Wagner, 2017 (CW)
Madry et al., 2017 (PGD)
...
Croce et al., FAB, AutoPGD ...
Rony et al., DDN, ALMA, ...
Pintor et al., 2021 (FMN)

Pintor, Biggio et al., Fast minimum-norm adversarial attacks …, NeurIPS 2021

𝒙! ≡ 𝒙

𝒙"#$

𝒙"

𝜹"#$
𝐿 𝒙

+ 𝜹,
𝑦, 𝜽

< 0

(2) 𝜹-step

𝜖"#$𝜖"

(1) 𝜖-step

FMN

Fast convergence to good local optima

Works in different norms (ℓ!, ℓ", ℓ#, ℓ$)

Easy tuning /robust to hyperparameter choice

30
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Perturbation models

Perturbation constraints can be 
formulated in simple cases as Lp norm
constraints

In general, a bigger perturbation
budget (larger constraint) makes the 
attack more effective

They enforce different levels of sparsity in 
the perturbation

31

ℓ1 norm

ℓ2 norm ℓ∞ norm

ℓ0 norm

Pintor, Biggio et al., Fast minimum-norm adversarial attacks …, NeurIPS 2021
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Perturbation models

32

ℓ'
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ℓ%

ℓ(

Clean

Pintor, Biggio et al., Fast minimum-norm adversarial attacks …, NeurIPS 2021



From White-Box to Black-Box Attacks

33
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From White-box to Black-box Transfer Attacks

• Only feature representation and (possibly) learning algorithm are known
• Surrogate data sampled from the same distribution as the classifier’s training data
• Classifier’s feedback to label surrogate data

PD(X,Y)data

Surrogate 
training data

Send queries

Get labels

f(x)

Learn
surrogate 
classifier

f’(x)

Biggio et al., ECML PKDD 2013; Demontis et al., USENIX 2019

This is the underlying idea behind 
substitute models and black-box 

attacks (transferability) 
investigated by N. Papernot et al., 

IEEE Euro SP ’16; ASIACCS’17.

34
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Beyond white-box evaluations

3
5

Demontis et al., Why Do Adversarial Attacks Transfer? USENIX Security 2019

target model

surrogate model

is the attack effective?

Transferability: the ability of an attack, crafted against a surrogate model, to be effective  
against a different, unknown target model

We propose three metrics that clarify the underlying factors behind transferability and allow 
highlighting interesting connections with model complexity

Key insights: 
- max-confidence attacks tend to transfer more
- the more similar the models (gradients), the more the attack transfers
- gradient alignment and smoothness of surrogate improve transferability
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Minimum-norm vs Max-confidence attacks for 
Transferability

36Demontis et al., Why Do Adversarial Attacks Transfer? USENIX Security 2019

Key insights: 
- max-confidence attacks tend to transfer more
- the more similar the models (gradients), the more the attack transfers
- gradient alignment and smoothness of surrogate improve transferability



Countering Evasion Attacks

What is the rule? The rule is protect yourself at all times
(from the movie “Million dollar baby”, 2004)

37
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Security Measures against Evasion Attacks

1. Robust optimization to model attacks
during learning
– adversarial training / regularization

2. Rejection / detection of
adversarial examples

min
𝒘
∑* max||𝜹%||-.

ℓ(𝑦* , 𝑓𝒘 𝒙* + 𝜹* )

bounded perturbation!

1 0 1

1

0

1

SVM-RBF (higher rejection rate)

1 0 1

1

0

1

SVM-RBF (no reject)

38
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• Robust optimization (a.k.a. adversarial training)

• Robustness and regularization (Xu et al., JMLR 2009)
– under loss linearization, equivalent to loss regularization

Increasing Input Margin via Robust Optimization

min
𝒘

max
||𝜹%||&-.

∑* ℓ 𝑦* , 𝑓𝒘 𝒙* + 𝜹*

bounded perturbation!

min
𝒘

∑𝒊 ℓ 𝑦* , 𝑓𝒘 𝒙* + 𝜖||𝛁𝒙ℓ*||$

dual norm of the perturbation

39
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The Effect of Robust Optimization on the Loss Surface

Yu et al., Interpreting and Evaluating NN Robustness, IJCAI 2019

random perturbation adv. perturbation random perturbation adv. perturbation

Undefended model – Adversarial accuracy: 0.3% Defended model – Adversarial accuracy: 44.7%

40
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Detecting and Rejecting Adversarial Examples

blind-spot evasion
(not even required to 

mimic the target class)

rejection of adversarial examples through
enclosing of legitimate classes

• Adversarial examples tend to occur in blind spots
– Regions far from training data that are anyway assigned to  ‘legitimate’ classes

41
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Security Measures against Evasion Attacks

1. Robust optimization to model attacks
during learning
– adversarial training / regularization

2. Rejection / detection of
adversarial examples

3. Ineffective defenses!

min
𝒘
∑* max||𝜹%||-.

ℓ(𝑦* , 𝑓𝒘 𝒙* + 𝜹* )

bounded perturbation!

1 0 1

1

0

1

SVM-RBF (higher rejection rate)

1 0 1

1

0

1

SVM-RBF (no reject)

42

1. Robust optimization to model attacks 
during learning
– adversarial training / regularization

2. Rejection / detection of
adversarial examples
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The Rise of Adversarial Defenses
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The Rise Fall of Adversarial Defenses
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Detect and Avoid Flawed Evaluations

• Problem: formal evaluations 
do not scale, adversarial 
robustness evaluated 
mostly empirically, via 
gradient-based attacks

• Gradient-based attacks 
can fail: many flawed 
evaluations have been 
reported, with defenses 
easily broken by 
adjusting/fixing the attack 
algorithms

45Pintor, Biggio et al., Indicators of Attack Failure: …, NeurIPS 2022
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Example: Gradient Obfuscation

Smooth function: linear 
approximation works

Non-smooth function: 
linear approximation leads 
to local minima

Zero gradients: impossible to 
find adversarial direction

When GD works When GD does not work

Check gradient
norm

Check variability
of loss landscape

Pintor, Biggio et al., Indicators of Attack Failure: …, NeurIPS 2022
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Change loss
function

Use smooth
approximation

Non-smooth function: 
linear approximation leads 
to local minima

Zero gradients: impossible to 
find adversarial direction

When GD does not work

Check gradient
norm

Check variability
of loss landscape

Example: Gradient Obfuscation

Pintor, Biggio et al., Indicators of Attack Failure: …, NeurIPS 2022
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Detect and Avoid Flawed Evaluations

• Problem: formal evaluations do not scale, adversarial robustness evaluated mostly 
empirically, via gradient-based attacks

• Gradient-based attacks can fail: many flawed evaluations have been reported, with 
defenses easily broken by adjusting/fixing the attack algorithms
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Pintor, Biggio et al., Indicators of Attack Failure: …, NeurIPS 2022 48



http://pralab.diee.unica.it @maurapintor

Experiments

Original evaluation

58%

Robust Accuracy

36%

Fix im
plem

entation

6%

Change loss function

Distillation

Original evaluation

94%

Robust Accuracy

0%

Change loss function

Ensemble
Diversity Original evaluation

38%

Robust Accuracy

36% 9%

Fix im
plem

entation
Tune hyperparam

eters

Turning a 
Weakness into 
a Strength Original evaluation

35%

Robust Accuracy

0%

Perform
 adaptive attack

k-Winners 
Take All

49Pintor, Biggio et al., Indicators of Attack Failure: …, NeurIPS 2022
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Why Is AI Vulnerable?

• Underlying assumption: past data is representative of 
future data (IID data)

• The success of modern AI is on tasks for which we 
collected enough representative training data

• We cannot build AI models for each task an agent 
is ever going to encounter, but there is a whole world 
out there where the IID assumption is violated

• Adversarial attacks point exactly at this lack of 
robustness which comes from IID specialization

Bernhard Schölkopf
Director, Max Planck Institute, Tuebingen, 

Germany

50



http://pralab.diee.unica.it @maurapintor

What’s Next?
Use-Inspired Basic Research Questions from the Pasteur’s Quadrant

• Studying ML Security may help understand and 
debug ML models... but

• ... can we use MLSec to help solve some of 
today’s industrial challenges? 
– To improve robustness/accuracy over time, 

requiring less frequent retraining
– To detect OOD examples and provide reliable

predictions (confidence values)
– To improve maintainability and interpretability of 

deployed models (update procedures)
– To learn reliably from noisy/incomplete labeled

datasets
– ...

• Challenge: to build more reliable and practical
ML models using MLSec / AdvML

51
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Practical session!

https://github.com/maurapintor/ARTISAN

https://github.com/maurapintor/ARTISAN


Open Course on MLSec
https://github.com/unica-mlsec/mlsec

Software Tools
https://github.com/pralab

Machine Learning Security Seminars
https://www.youtube.com/c/MLSec

53

Thanks!

Maura Pintor
maura.pintor@unica.it

Pattern Recognition
and Applications Lab

University of 
Cagliari, Italy

https://github.com/unica-mlsec/mlsec
https://github.com/pralab
https://www.youtube.com/c/MLSec
mailto:maura.pintor@unica.it


Indiscriminate (DoS) Poisoning Attacks

54
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Attacks against Machine Learning

Integrity Availability Privacy / Confidentiality

Test data Evasion (a.k.a. adversarial 
examples)

Sponge Attacks Model extraction / stealing  
Model inversion (hill climbing)
Membership inference

Training data Backdoor/targeted poisoning (to 
allow subsequent intrusions) –
e.g., backdoors or neural trojans

Indiscriminate (DoS) 
poisoning (to maximize 
test error)

Sponge Poisoning

-

Attacker’s Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

Biggio and Roli, Wild Patterns, Patt. Rec. 2018, Best paper award and PR medal 2021

Misclassifications that do 
not compromise normal 
system operation

Misclassifications that 
compromise normal 
system operation

Attacker’s Goal

Attacker’s Capability

Querying strategies that reveal 
confidential information on the 
learning model or its users

55
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A Deliberate Poisoning Attack?

[http://exploringpossibilityspace.blogspot.it/2016
/03/poor-software-qa-is-root-cause-of-tay.html]

Microsoft deployed Tay, 
and AI chatbot designed 
to talk to youngsters on 
Twitter

But after 16 hours the 
chatbot was shut down 
since it started to raise 
racist and offensive 
comments.

56
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• Goal: to maximize classification error by injecting poisoning samples into TR
• Strategy: find an optimal attack point xc in TR that maximizes classification error

xc

classification error = 0.039classification error = 0.022

Denial-of-Service Poisoning Attacks

xc

classification error as a function of xc

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012 57
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Poisoning is a Bilevel Optimization Problem

• Attacker’s objective
– to maximize generalization error on untainted data, w.r.t. poisoning point xc

Loss estimated on validation data
(no attack points!)

Algorithm is trained on surrogate data
(including the attack point)

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012
Xiao, Biggio et al., Is feature selection secure against training data poisoning? ICML, 2015

Munoz-Gonzalez, Biggio et al., Towards poisoning of deep learning..., AISec 2017

max
'!

𝐿 𝐷()* , 𝑤∗

s. t. 𝑤∗ = argmin, ℒ 𝐷-. ∪ 𝒙/, 𝑦/ , 𝑤

58
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xc
(0) xc

Gradient-based Poisoning Attacks

• Gradient is not easy to compute
– The training point affects the classification function

• Trick:
– Replace the inner learning problem with its equilibrium (KKT) 

conditions
– This enables computing gradient in closed form

xc
(0)

xc

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012
Xiao, Biggio, Roli et al., Is feature selection secure against training data poisoning? ICML, 2015

Demontis, Biggio et al., Why do Adversarial Attacks Transfer? USENIX 2019 59
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Experiments on MNIST digits
Single-point attack

• Linear SVM; 784 features; TR: 100; VAL: 500; TS: about 2000
– ‘0’ is the malicious (attacking) class
– ‘4’ is the legitimate (attacked) one

xc
(0) xc

Biggio, Nelson, Laskov. Poisoning attacks against SVMs. ICML, 2012 60



Countering Poisoning Attacks

What is the rule? The rule is protect yourself at all times
(from the movie “Million dollar baby”, 2004)

61
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Security Measures against Poisoning

• Rationale: poisoning injects outlying training samples

• Two main strategies for countering this threat
1. Data sanitization: remove poisoning samples from training data

• Bagging for fighting poisoning attacks (B. Biggio et al., MCS 2011)
• Reject-On-Negative-Impact (RONI) defense (B. Nelson et al., LEET 2008)

2. Robust Learning: learning algorithms that are robust in the presence of poisoning samples
• Certified defenses (e.g., J. Steinhardt, P. W. Koh, and P. Liang, NeurIPS 2017) 

62



Backdoor Attacks
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Attacks against Machine Learning

Integrity Availability Privacy / Confidentiality

Test data Evasion (a.k.a. adversarial 
examples)

Sponge Attacks Model extraction / stealing  
Model inversion (hill climbing)
Membership inference

Training data Backdoor/targeted poisoning 
(to allow subsequent 
intrusions) – e.g., backdoors or 
neural trojans

Indiscriminate (DoS) 
poisoning (to maximize 
test error)

Sponge Poisoning

-

Attacker’s Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

Misclassifications that do 
not compromise normal 
system operation

Misclassifications that 
compromise normal 
system operation

Attacker’s Goal

Attacker’s Capability

Querying strategies that reveal 
confidential information on the 
learning model or its users

64Biggio and Roli, Wild Patterns, Patt. Rec. 2018, Best paper award and PR medal 2021
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Training data (poisoned)

Backdoored stop sign
(labeled as speedlimit)

Backdoor Poisoning Attacks

Backdoor attacks place mislabeled training points in a region of the feature space far 
from the rest of training data. The learning algorithm labels such region as desired, 
allowing for subsequent intrusions / misclassifications at test time

Training data (no poisoning)

T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities 
in the machine learning model supply chain. NIPSW. MLCS, 2017 65
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Defending against Backdoor Poisoning Attacks

Fine Pruning
...

Gao et al., Backdoor Attacks and Countermeasures on Deep 
Learning: A Comprehensive Review, arXiv 2007.10760

SentiNet (GradCAM)
ABS
NIC
...

Spectral Signature
...
Neural Cleanse
DeepInspect
...

66



Other Attacks on Machine Learning Models
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Attacks against Machine Learning

Integrity Availability Privacy / Confidentiality

Test data Evasion (a.k.a. adversarial 
examples)

Sponge Attacks Model extraction / stealing
Model inversion (hill climbing)
Membership inference

Training data Backdoor/targeted poisoning (to 
allow subsequent intrusions) –
e.g., backdoors or neural trojans

Indiscriminate (DoS) 
poisoning (to maximize
test error)

Sponge Poisoning

-

Attacker’s Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

Misclassifications that do 
not compromise normal 
system operation

Misclassifications that 
compromise normal 
system operation

Attacker’s Goal

Attacker’s Capability

Querying strategies that reveal 
confidential information on the 
learning model or its users

68Biggio and Roli, Wild Patterns, Patt. Rec. 2018, Best paper award and PR medal 2021



http://pralab.diee.unica.it @maurapintor

Sponge Poisoning

• Attacks aimed at increasing energy consumption of DNN models deployed on 
embedded hardware systems 

Shumailov et al., Sponge Examples..., EuroSP 2021
Cinà, Biggio et al., Sponge Poisoning..., arXiv 2022 69
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Membership Inference Attacks
Privacy Attacks (Shokri et al., IEEE Symp. SP 2017)

• Goal: to identify whether an input sample is part of the training set used to learn a deep 
neural network based on the observed prediction scores for each class

70
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Bosch AI Shield against Model Stealing/Extraction Attacks

71
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Model Inversion Attacks
Privacy Attacks

• Goal: to extract users’ sensitive information
(e.g., face templates stored during user enrollment) 
– Fredrikson, Jha, Ristenpart. Model inversion attacks that exploit 

confidence information and basic countermeasures. ACM CCS, 
2015

• Also known as hill-climbing attacks in the biometric community
– Adler. Vulnerabilities in biometric encryption systems.

5th Int’l Conf. AVBPA, 2005
– Galbally, McCool, Fierrez, Marcel, Ortega-Garcia. On the 

vulnerability of face verification systems to hill-climbing attacks. 
Patt. Rec., 2010

• How: by repeatedly querying the target system and adjusting 
the input sample to maximize its output score (e.g., a measure 
of the similarity of the input sample with the user templates)

Reconstructed Image

Training Image
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Machine Learning Defenses in a Nutshell

Integrity Availability Privacy / Confidentiality

Test data Evasion (a.k.a. adversarial 
examples) 

Sponge Attacks Model extraction / stealing  
Model inversion 
Membership inference

Training data Backdoor/Targeted poisoning (to 
allow subsequent intrusions)

Indiscriminate (DoS) 
poisoning 

Sponge Poisoning

-

Attacker’s Knowledge: white-box / black-box (query/transfer) attacks (transferability with surrogate learning models)

Misclassifications that do 
not compromise normal 
system operation

Misclassifications that 
compromise normal 
system operation

Attacker’s Goal

Attacker’s Capability

Querying strategies that reveal 
confidential information on the 
learning model or its users

73Biggio and Roli, Wild Patterns, Patt. Rec. 2018, Best paper award and PR medal 2021


