

Reliable Evaluation and Benchmarking of Machine Learning Models

Maura Pintor Assistant Professor @ University of Cagliari (Italy)

maurapintor.github.io maura.pintor@unica.it

Attacks against AI are Pervasive!

Sharif et al., Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, ACM CCS 2016

"without the dataset the article is useless"

"okay google browse to evil dot com"

Carlini and Wagner, Audio adversarial examples: Targeted attacks on speech-to-text, DLS 2018 https://nicholas.carlini.com/code/audio_adversarial_examples/

Eykholt et al., Robust physical-world attacks on deep learning visual classification, CVPR 2018

- Demetrio, Biggio, Roli et al., Adversarial EXEmples: ..., ACM TOPS 2021
- Demetrio, Biggio, Roli et al., Functionality-preserving black-box optimization of adversarial windows malware, IEEE TIFS 2021
- Demontis, Biggio, Roli et al., Yes, Machine Learning Can Be More Secure!..., IEEE TDSC 2019

Attacks against Machine Learning

Attacker's Goal

	Misclassifications that do not compromise normal system operation	Misclassifications that compromise normal system operation	Querying strategies that reveal confidential information on the learning model or its users			
Attacker's Capability	Integrity	Availability	Privacy / Confidentiality			
Test data	Evasion (a.k.a. adversarial examples)	Sponge Attacks	Model extraction / stealing Model inversion (hill climbing) Membership inference			
Training data	Backdoor poisoning (to allow subsequent intrusions) – e.g., backdoors or neural trojans	DoS poisoning (to maximize classification error)	-			

Attacker's Knowledge:

- perfect-knowledge (PK) white-box attacks
- limited-knowledge (LK) black-box attacks (*transferability* with surrogate/substitute learning models)

Adversarial Examples (AdvX)

 $\min_{\mathbf{w}} L(D; \mathbf{w})$

Adversarial Examples (AdvX)

http://pralab.diee.unica.it

X @maurapintor

Biggio et al., Evasion Attacks Against Machine Learning at Test Time, ECML PKDD 2013 Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014

Adversarial Examples (AdvX)

http://pralab.diee.unica.it

X@maurapintor

Biggio et al., Evasion Attacks Against Machine Learning at Test Time, ECML PKDD 2013 Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014

How to craft AdvXs

Exhaustive search \rightarrow not possible for modern deep learning models **Empirical evaluation** \rightarrow attack = optimization problem + solving algorithm

$$egin{aligned} oldsymbol{\delta}^\star \in rgmin_{oldsymbol{\delta}} & \mathcal{L}(oldsymbol{x}+oldsymbol{\delta},y,oldsymbol{ heta})\ ext{ s.t. } & \|oldsymbol{\delta}\|_p \leq \epsilon\ & oldsymbol{x}_{ ext{lb}} \preceq oldsymbol{x}+oldsymbol{\delta} \preceq oldsymbol{x}_{ ext{ub}} \end{aligned}$$

Optimize model's confidence on bad decision keeping perturbation small and respecting feature space constraints

How to craft AdvXs

Exhaustive search \rightarrow not possible for modern deep learning models **Empirical evaluation** \rightarrow attack = optimization problem + solving algorithm

Biggio et al., Evasion Attacks Against Machine Learning at Test Time, ECML PKDD 2013 Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014

Defending against AdvXs

• Robust training (a.k.a. Adversarial training)

 $\min_{\boldsymbol{w}} \max_{||\boldsymbol{\delta}_i||_{\infty} \leq \epsilon} \sum_i \ell(y_i, f_{\boldsymbol{w}}(\boldsymbol{x}_i + \boldsymbol{\delta}_i))$

• Detectors

Why is this happening?

Ideal world: formal verification and certified robustness There is no AdvX in the given perturbation domain

Real world: we can only test with empirical attacks

attack succeeds \rightarrow the model is not robust attack fails \rightarrow we cannot conclude much...

Example: Gradient Obfuscation

When GD works

When GD does not work

Smooth function: linear approximation works

variability of loss landscape

Attack does not return an adversarial example ... but can we say there is no way of finding one?

Example: Gradient Obfuscation

When GD does not work

Check variability of loss landscape

Use smooth approximation

Detect and Avoid Flawed Evaluations

- **Problem:** formal evaluations do not scale, adversarial robustness evaluated mostly empirically, via gradient-based attacks
- Gradient-based attacks can fail: many flawed evaluations have been reported, with defenses easily broken by adjusting/fixing the attack algorithms

Loss/Model-specific fixes to ensure gradients are smooth Attack-specific fixes to ensure attack optimization runs correctly

A benchmark of gradient-based attacks

https://attackbench.github.io

Beyond white-box evaluations

Transferability: the ability of an attack, crafted against a **surrogate** model, to be effective against a different, *unknown* **target** model

Black-box testing: observing input-output pairs (either scores or output labels) and estimating the loss function gradient without accessing to the model internals

http://pralab.diee.unica.it

X @maurapintor

Papernot et al., Practical Black-Box Attacks against Machine Learning, ASIACCS 2017 Demontis et al., Why Do Adversarial Attacks Transfer? USENIX Security 2019

Realizable attacks: Application-Specific Perturbation Models

• What if there is no clear inverse mapping to the input domain?

Even worse...

For malware, we have to manipulate symbols/bytes/strings while preserving functionality!

Adversarial attacks for images

http://pralab.diee.unica.it X@m

Adversarial attacks for security detectors

 $\min_{\delta} L(f(\phi(h(x;\delta) y)$ Model function and features Need to explicit the model function and the features, since they might be non differentiable

Practical Manipulations No additions, but a complex function that handles format specification by design

X @maurapintor

Demetrio et al., Adversarial EXEmples: a Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection, ACM TOPS 2021

Practical Manipulations

Practical Relevance of Perturbation Models

- Are the hypothesized perturbation models realistic enough?
- Let's assume we built a model robust to adversarial examples
 - but it does not seem to be much more robust over time...
 - new types of malware, different distributions <u>unseen in training</u>

Open research problem

To evaluate the soundness of current adversarial robustness methods

Current solution: frequent model updates

requires time and (also human) resources

Machine Learning for Android Malware

Concept Drift in Android Malware

Concept Drift in Android Malware

How to predict a performance drop? Is this drift similar to the previous?

ELSA Cybersecurity Use Case

Al-based detectors perform well, but suffer from:

- performance decay over time
- vulnerability to evasion attacks

Benchmark to assess (and compare) models' robustness w.r.t.:

- <u>natural evolution of applications</u>
- adversarial manipulations of malware samples

Goal: build AI-based malware detectors that can be maintained with less effort, and react more promptly to novel threats

Three different competition tracks Challenge: https://benchmarks.elsa-ai.eu/?ch=6

ELSA Cybersecurity - Competition Tracks

Track 1: Adversarial Robustness to Feature-space Attacks

- models are trained on the same feature set (DREBIN, extracted features are provided)
- simulated feature injection
- different amounts of adversarial perturbation (i.e., the number of manipulated features)

Date	Method	False Positive Rate	Clean data	25 manipulated features	50 manipulated features	100 manipulated features
2024-05-24	Baseline - DREBIN	0.36%	77.28%	1.20%	0.00%	0.00%

Track 2: Adversarial Robustness to Problem-space Attacks

- practical manipulation of application samples (paper coming soon...)
- the attacker does not know anything about the attacked detector

Date M		Method	False Positive Rate	Clean data	100 manipulated features		
2024-06-24		POF	D	Baseline - DREBIN	0.36%	77.28%	4.24%

ELSA Cybersecurity - Competition Tracks

Track 3: Temporal Robustness to Data Drift

- evaluation with new test data collected over time
- Performance metric: Area Under Time on F1-score

Date			Method	Area Under Time - F1 score
2024-06-04	PDF	ð	Baseline - DREBIN	0.7927

Pendlebury et al., TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time. Usenix, 2018.

ELSA Cybersecurity - Participation Rules

Participants design their own detector pipeline based on statically-extracted features

- model training is on the users' side
- to participate, they provide a couple of interface methods
- and publish source code and pre-trained models
- we provide the script to automatically evaluate and upload the submission

https://github.com/pralab/elsa-cybersecurity

Baselines available (also as examples):

- DREBIN from Arp et al. "Drebin: Effective and explainable detection of android malware in your pocket." NDSS. Vol. 14. 2014.
- **SecSVM** from Demontis et al. "Yes, machine learning can be more secure! a case study on android malware detection." IEEE TDSC 2017.

https://github.com/pralab/android-detectors

Let's fix ML Security

Bug #1: slow, hard-to-configure, limited attacks Fix #1: improve available attacks

Bug #2: lack of debugging tools for ML Security Fix #2: develop tests and track metrics on the attacks

Bug #3: Keep in mind the real world Fix #3: create strong and realizable attacks Fix #3(bis): benchmark in realistic scenarios

How about tools for ML security?

SecML: An Open-source Python Library for ML Security

- MI

- DL algorithms and optimizers via PyTorch and Tensorflow () 🌾

adv

ml

- attacks (evasion, poisoning, ...) with custom/faster solvers
- defenses (advx rejection, adversarial training, ...)

expl

others

- Explanation methods based on influential features
- Explanation methods based on influential prototypes

- Parallel computation
- Support for dense/sparse data
- Advanced plotting functions (via matplotlib)
- Modular and easy to extend

Code: <u>https://github.com/pralab/secml</u>

SecML-Torch! (SecMLT)

MLOPS: Continuous development and deployment cycle

SecMLT will offer the techniques to test and validate the release of novel machine learning models

SecML-Torch example

- Powered by PyTorch
- Model wrapper to expose APIs
- Preprocessing and constraints taken into account
- Attacks (evasion, poisoning, ...) with custom/faster solvers
- Logging / debugging features (e.g., Tensorboard)
- WIP: Defenses (advx rejection, adversarial training, ...)
- WIP: extension to other domains (stay tuned...)

from secmlt.adv.evasion.pgd import PGD
from secmlt.metrics.classification import Accuracy
from secmlt.models.pytorch.base_pytorch_nn import BasePytorchClassifier

```
model = ...
torch_data_loader = ...
```

```
# Wrap model
model = BasePytorchClassifier(model)
```

```
# create and run attack
attack = PGD(
    perturbation_model="12",
    epsilon=0.4,
    num_steps=100,
    step_size=0.01,
```

adversarial_loader = attack(model, torch_data_loader)

```
# Test accuracy on adversarial examples
robust_accuracy = Accuracy()(model, adversarial_loader)
```

TensorBoard	TIME SERIES SCALARS IMAGES		E 🔹 🕈 🚯	C 🏟 📀
Q Filter runs (regex)	Q Filter tags (regex) All Scalars	Image	Histogram	Settings
🗸 Run 🔮	F Pinned		Settings	×
Z .	Pin cards for a quick view and comparison		GENERAL	
	Sample #0 6 cards	~	Horizontal Axis Step	-
	Sample #1 6 cards	~	Enable step se	election and data table
	Sample #2 6 cards	~	(Scalars only)	ange Selection
	Sample #3 6 cards	~	Link by st	ep 199
	Sample #4 6 cards	~	Card Width	•
			SCALARS Smoothing Tooltip sorting met (Alphabetical) (Alphabetical	
http://pral	ab.diee.unica.it X@maurapintor			35

Red teaming AI Security

- We have to consider the problem as a whole
 - small imperceptible perturbations are only the tip of the iceberg
 - from the security point of view, all models can be exploited, even with attacks that are not targeting the AI component
- Focus on knowing the system's weaknesses
 - we should know when and for what we can trust the system, even if it's only for small tasks
 - don't stop at the ideal conditions!

University of Cagliari, Italy

Thanks!

Open Course on MLSec https://github.com/unica-mlsec/mlsec

Machine Learning Security Seminars https://www.youtube.com/c/MLSec

Software Tools https://github.com/pralab

Maura Pintor maura.pintor@unica.it

Special thanks to Battista Biggio, Luca Demetrio, Angelo Sotgiu, Daniele Angioni, and Antonio Emanuele Cinà for sharing with me some of the material used in these slides.