

Reliable Evaluation and Benchmarking of Machine Learning Models

Maura Pintor
Assistant Professor @ University of Cagliari (Italy)

maurapintor.github.io maura.pintor@unica.it

UPM Cybersecurity Postgraduate Summer School – September 3rd, 2024

Attacks against Al are Pervasive!

Sharif et al., Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition, ACM CCS 2016

"without the dataset the article is useless"

"okay google browse to evil dot com"

Carlini and Wagner, Audio adversarial examples: Targeted attacks on speech-to-text, DLS 2018 https://nicholas.carlini.com/code/audio_adversarial_examples/

Eykholt et al., Robust physical-world attacks on deep learning visual classification, CVPR 2018

- Demetrio, Biggio, Roli et al., Adversarial EXEmples: ..., ACM TOPS 2021
- Demetrio, Biggio, Roli et al., Functionality-preserving black-box optimization of adversarial windows malware, IEEE TIFS 2021
- Demontis, Biggio, Roli et al., Yes, Machine Learning Can Be More Secure!..., IEEE TDSC 2019

http://pralab.diee.unica.it

Attacks against Machine Learning

Attacker's Goal

Au	acker 5 duar			
	Misclassifications that do not compromise normal system operation	Misclassifications that compromise normal system operation	Querying strategies that reveal confidential information on the learning model or its users	
Attacker's Capability	Integrity	Availability	Privacy / Confidentiality	
Test data	Evasion (a.k.a. adversarial examples)	Sponge Attacks	Model extraction / stealing Model inversion (hill climbing) Membership inference	
Training data	Backdoor poisoning (to allow subsequent intrusions) – e.g., backdoors or neural trojans	DoS poisoning (to maximize classification error)	-	

Attacker's Knowledge:

• perfect-knowledge (PK) white-box attacks

X @maurapintor

• limited-knowledge (LK) black-box attacks (transferability with surrogate/substitute learning models)

Adversarial Examples (AdvX)

 $\min_{\mathbf{w}} L(D; \mathbf{w})$

Adversarial Examples (AdvX)

Adversarial Examples (AdvX)

How to craft AdvXs

Exhaustive search → not possible for modern deep learning models

Empirical evaluation → attack = optimization problem + solving algorithm

$$oldsymbol{\delta}^{\star} \in \operatorname*{arg\ min}_{oldsymbol{\delta}} \quad \mathcal{L}(oldsymbol{x} + oldsymbol{\delta}, y, oldsymbol{ heta})$$
 s.t. $\|oldsymbol{\delta}\|_p \leq \epsilon$ $oldsymbol{x}_{ ext{lb}} \preceq oldsymbol{x} + oldsymbol{\delta} \preceq oldsymbol{x}_{ ext{ub}}$

Optimize model's confidence on bad decision keeping perturbation small and respecting feature space constraints

How to craft AdvXs

Exhaustive search → not possible for modern deep learning models

Empirical evaluation → attack = optimization problem + solving algorithm

Robust Accuracy = accuracy under worst-case perturbation (fixed perturbation size)

Defending against AdvXs

Robust training (a.k.a. Adversarial training)

$$\min_{\mathbf{w}} \max_{||\boldsymbol{\delta}_i||_{\infty} \leq \epsilon} \sum_{i} \ell(y_i, f_{\mathbf{w}}(\mathbf{x}_i + \boldsymbol{\delta}_i))$$

Detectors

The Rise of Adversarial Defenses

Papernoteral Mengeral Prokonanter Incoding W.L.R. Prokonanter Incoding W.L. Prokonater I

Rollet at 2019 Paneet at 2019 treeting white the strength (Dentity)

Why is this happening?

Ideal world: formal verification and certified robustness There is no AdvX in the given perturbation domain

Real world: we can only test with empirical attacks

attack succeeds → the model is not robust attack fails → we cannot conclude much...

Example: Gradient Obfuscation

When GD works

Smooth function: linear approximation works

When GD does not work

Attack does not return an adversarial example ... but can we say there is no way of finding one?

Example: Gradient Obfuscation

When GD does not work

Use smooth approximation

Detect and Avoid Flawed Evaluations

- Problem: formal evaluations do not scale, adversarial robustness evaluated mostly empirically, via gradient-based attacks
- Gradient-based attacks can fail: many flawed evaluations have been reported, with defenses easily broken by adjusting/fixing the attack algorithms

A benchmark of gradient-based attacks

Beyond white-box evaluations

Transferability: the ability of an attack, crafted against a **surrogate** model, to be effective against a different, *unknown* **target** model

Black-box testing: observing input-output pairs (either scores or output labels) and estimating the loss function gradient without accessing to the model internals

Realizable attacks: Application-Specific Perturbation Models

What if there is no clear inverse mapping to the input domain?

Even worse...

Not runnable anymore!

For malware, we have to manipulate symbols/bytes/strings while preserving functionality!

http://pralab.diee.unica.it

Adversarial attacks for images

Network architecture in the loss

All the internals of a neural network / shallow model are hidden inside the loss

Additive Manipulation

Input samples are injected with additive noise, without any concern on the structure of the file

Adversarial attacks for security detectors

Model function and features

Need to explicit the model function and the features, since they might be non differentiable

Practical Manipulations

No additions, but a complex function that handles format specification by design

Practical Manipulations

Practical Manipulation function

Alter file representation without destroying the structure and the functionalities and avoid usage of sandboxes

Manipulations are parametrized so an optimization algorithm can

fine tune them

Practical Relevance of Perturbation Models

- Are the hypothesized perturbation models realistic enough?
- Let's assume we built a model robust to adversarial examples
 - but it does not seem to be much more robust over time...
 - new types of malware, different distributions unseen in training

Open research problem

To evaluate the soundness of current adversarial robustness methods

Current solution: frequent model updates

requires time and (also human) resources

Machine Learning for Android Malware

Hand-crafted features extracted from APK Binary sparse feature vector

25

Concept Drift in Android Malware

Concept Drift in Android Malware

How to predict a performance drop? Is this drift similar to the previous?

ELSA Cybersecurity Use Case

Al-based detectors perform well, but suffer from:

- performance decay over time
- vulnerability to evasion attacks

Benchmark to assess (and compare) models' robustness w.r.t.:

- natural evolution of applications
- adversarial manipulations of malware samples

Goal: build Al-based malware detectors that can be <u>maintained with less effort</u>, and react more promptly to <u>novel threats</u>

Three different competition tracks

Challenge: https://benchmarks.elsa-ai.eu/?ch=6

ELSA Cybersecurity - Competition Tracks

Track 1: Adversarial Robustness to Feature-space Attacks

- models are trained on the same feature set (DREBIN, extracted features are provided)
- simulated feature injection
- different amounts of adversarial perturbation (i.e., the number of manipulated features)

Date	Method	False Positive Rate	Clean data	25 manipulated features	50 manipulated features	100 manipulated features
2024-05-24 🖹 🎅 🖸	Baseline - DREBIN	0.36%	77.28%	1.20%	0.00%	0.00%

Track 2: Adversarial Robustness to Problem-space Attacks

- practical manipulation of application samples (paper coming soon...)
- the attacker does not know anything about the attacked detector

Date		Method	False Positive Rate	Clean data	100 manipulated features
2024-06-24	POF	Baseline - DREBIN	0.36%	77.28%	4.24%

ELSA Cybersecurity - Competition Tracks

Track 3: Temporal Robustness to Data Drift

- evaluation with new test data collected over time
- Performance metric: Area
 Under Time on F1-score

ELSA Cybersecurity - Participation Rules

Participants design their own detector pipeline based on statically-extracted features

- model training is on the users' side
- to participate, they provide a couple of interface methods
- and publish source code and pre-trained models
- we provide the script to automatically evaluate and upload the submission

https://github.com/pralab/elsa-cybersecurity

Baselines available (also as examples):

- DREBIN from Arp et al. "Drebin: Effective and explainable detection of android malware in your pocket." NDSS. Vol. 14. 2014.
- SecSVM from Demontis et al. "Yes, machine learning can be more secure! a case study on android malware detection." IEEE TDSC 2017.

https://github.com/pralab/android-detectors

Let's fix ML Security

Bug #1: slow, hard-to-configure, limited attacks

Fix #1: improve available attacks

Bug #2: lack of debugging tools for ML Security

Fix #2: develop tests and track metrics on the attacks

Bug #3: Keep in mind the real world Fix #3: create strong and realizable attacks Fix #3(bis): benchmark in realistic scenarios

How about tools for ML security?

SecML: An Open-source Python Library for ML Security

ml

- ML algorithms via sklearn

- DL algorithms and optimizers via PyTorch and Tensorflow () **

adv

- attacks (evasion, poisoning, ...) with custom/faster solvers
- defenses (advx rejection, adversarial training, ...)

expl

- Explanation methods based on influential features
- Explanation methods based on influential prototypes

others

- Parallel computation
- Support for dense/sparse data
- Advanced plotting functions (via matplotlib)
- Modular and easy to extend

Code: https://github.com/pralab/secml

SecML-Torch! (SecMLT)

MLOPS: Continuous development and deployment cycle

SecMLT will offer the techniques to test and validate the release of novel machine learning models

Code: https://github.com/pralab/secml-torch

33

SecML-Torch example

- Powered by PyTorch
- Model wrapper to expose APIs
- Preprocessing and constraints taken into account
- Attacks (evasion, poisoning, ...) with custom/faster solvers
- Logging / debugging features (e.g., Tensorboard)
- WIP: Defenses (advx rejection, adversarial training, ...)
- WIP: extension to other domains (stay tuned...)

```
from secmlt.adv.evasion.pgd import PGD
from secmlt.metrics.classification import Accuracy
from secmlt.models.pytorch.base pytorch nn import BasePytorchClassifier
model = ...
torch data loader = ...
# Wrap model
model = BasePytorchClassifier(model)
# create and run attack
attack = PGD(
    perturbation_model="12",
    epsilon=0.4,
   num_steps=100,
    step_size=0.01,
adversarial_loader = attack(model, torch_data_loader)
# Test accuracy on adversarial examples
robust_accuracy = Accuracy()(model, adversarial_loader)
```


Red teaming Al Security

- We have to consider the problem as a whole
 - small imperceptible perturbations are only the tip of the iceberg
 - from the security point of view, all models can be exploited, even with attacks that are not targeting the AI component
- Focus on knowing the system's weaknesses
 - we should know when and for what we can trust the system, even if it's only for small tasks
 - don't stop at the ideal conditions!

Thanks!

Open Course on MLSec https://github.com/unica-mlsec/mlsec

Machine Learning Security Seminars https://www.youtube.com/c/MLSec

Software Tools https://github.com/pralab

Maura Pintor maura.pintor@unica.it

Special thanks to Battista Biggio, Luca Demetrio, Angelo Sotgiu, Daniele Angioni, and Antonio Emanuele Cinà for sharing with me some of the material used in these slides.