
Industrial Software Development

Tutoring sessions

Tutor: Maura Pintor (maura.pintor@unica.it)

Organization

Thursday h 15:00 - 18:00 Room AB
and Teams channel

Topics:
1. Setup and Python basics
2. Python advanced
3. Design patterns (required for exam)
4. Projects in teams

Organization

All lessons will be held in hybrid mode. The first three topics will be
also recorded and available on Teams. The group activity will not be
recorded (and in-presence mode is recommended!).
Ask questions! Use the Teams channel, send me a PM on Teams
(associated to this email:), or directly send
an email to

maura.pintor@unica.it

maura.pintor@unica.it

mailto:maura.pintor@unica.it
mailto:maura.pintor@unica.it

Today: Setup and Python basics

What to know about Python:
it is an interpreted language

indentation matters
extremely flexible (not always a good thing)

Setting up the interpreter

1. Install
2. Create an interpreter conda create --name isde
3. Activate the interpreter conda activate isde
4. Use the interpreter
5. (optional) Deactivate the interpreter conda deactivate

The last step is optional as it will be done automatically when the
shell session terminates.

Miniconda

https://docs.conda.io/en/latest/miniconda.html

Setting up the interpreter

If you have an IDE, check out the dedicated instructions for setting
the interpreter in your project. It will make life easier!

Python variables and types

examples of types
number = 100 # integer
another_number = 10.6 # floating point
letter= "a" # char

gets the type of a variable
type(number)

str(number) # type conversion

Exercise

Print the results of the following expressions:

a = 15
b = -20
c = a-b
c = not a
c = (a==b) or ((a+b)==-5)

Exercise

Try to predict what will be the result of these expressions

print ((4>6) and (3>8))
print ((4>6) or (3>8))
print (1 == 1 and 2 == 1)
print (False and 0 != 0)
print (not (True and False))

Aggregations of variables

l = [0, 1, 2] # list
s = "some text" # string

print(type(l))
print(type(s))

l = [[0, 1], [2, 3]] # nesting

Indexing lists and strings

 l = [0, 1, 2]

take first element (or element at position X)
fist_element = l[0] # numbering starts from zero!
first_letter = s[0]

take last element (or element at position -X)
last_letter = s[-1]

Indexing lists and strings

take portion of elements (from A to B -> B not included)
group_of_letters = s[1:5] # elements from 1 to 4

if one end is not specified, uses a default
first_letters = s[:2] # default: start from 0
last_letters = s[2:] # default: end with -1

take one element each N
reverse_string = s[::2] # one each 2

take elements in reverse
reverse_string = s[::-1]

Indexing lists and strings

l = [[1, 2], [3, 4, 5]]

access nested lists
sublist = l[0]
element_of_sublist = l[0][1]

Edit elements

REMEMBER: elements of strings cannot be edited!

l = ['a', 1, 2]
l[0] = 0 # changes first element to 0

s = "text"
s[0] = "n" # DOES NOT WORK
s = "next" # re-defining the string works

Operations with strings and lists

l = [0, 1, 2]
l = l + [3, 4, 5] # concatenates the lists
s = "abc" + "def" # works also with strings

s = '!' * 30 # creates a string with 30 '!'

number_of_chars = len(s) # length of the string

Operations with strings only

s = "abCdef"
lowercase = s.lower()
uppercase = s.upper()

checks if sequence "de" is contained in the string
de_in_s = "de" in s # case sensitive!

Fancy strings

Since Python 3.6, strings can access directly python variables.

This converts the variable automatically into a string type and
concatenates it inside of the string.

number = 222
s = f"The lucky number is {number}"
print(s)

Tuples

Tuples can be seen as unmutable lists.

t = (0, 1, 2,)

t[0] = 1 # does not work

Dictionaries

Remember: each key is unique! Remember: keys are not sorted!

d = {'age': 22, 'name': 'joe'}
age = d['age'] # takes element by key
keys = d.keys() # all keys
values = d.values() # all values
d['surname'] = 'doe' # adds one key
d['name'] = 'john' # edits element

Sets

As dictionaries, the sets don't preserve the order of the elements.

stores unique values, removes duplicates
s = {1, 2, 3, 1, 2, 3}

Control structures

How to change the control flow of a program?
if
if-else
if-elif-else
while
for
Remember: Python uses intentation to define control flow structures

Normal control flow

instr1 instr2 instr3

a = 2 # instr1
b = a + 3 # instr2
c = b/2 # instr3

If-only control flow

True

False

instr1 condition

instrA

instr2

a = 2 # instr1
if a >= 1: # condition
 print("greater than or equal to 1") # instrA
print(a) # instr2

ATTENTION: anything different than 0 or False is considered True!

If-else control flow

True

False

instr1 condition

instrA

instrB

a = 2 # instr1
if a >= 1: # condition
 print("greater than or equal to 1") # instrA
else:
 print("smaller than 1") # instrB

If-elif-else control flow

True

False

True

False

instr1 condition1

instrA

condition2

instrB

instrC

a = 2 # instr1
if a >= 1: # condition1
 print("greater than 1") # instrA
elif a == 1:
 print("equal to 1") # instrB
else:
 print("smaller than 1") # instrC

Loops

What if we have to repeat the same instruction multiple times? We
can use loops. They repeat the instruction until the stop condition is
met.

While loops

Used to repeat actions until condition is met.
CTRL + c if you get stuck in a while loop :D

True

False

instr1 condition

instrA

instr2

a = 0 # instr1
while a < 10: # condition
 a += 1 # instrA
print(a) #inst2

For loops

Used for index-based structures or variables or to repeat actions
(exactly) N times.

#get only items
for item in [0, 1, 2]:
 print(item)

get index and item
for index, item in enumerate([0, 1, 2]):
 print(index,item)

do action exactly N times
for i in range(10):
 print("string")

For loops

Can be used to iterate through dictionaries.

d = {'A': [0, 1, 2], 'B': [3, 4, 5]}

for key, value in d.items():
 print(key, value)

Exercise

Print the sum of a list of integers.
Implement it with a for loop and a while loop.

Functions

Useful for dividing complex problems into more simple and solvable
sub-problems. They are blocks of code that solve a sub-problem,
returning directly the result.

Main problem: Take away one point for each score of each student.
Sub-problem: Subtract one to all elements of a list (solved for each
student).
Sub-sub-problem: Subtract one to one element.

students = {
 'A': [20, 23, 22, 19],
 'B': [18, 22, 19, 28],
 'C': [30, 18, 22, 30]
 }

Functions

Input parameter(s): information required to find the result (x)
Output(s): result of the function (return x - 1)

def subtract_one(x):
 """Subtracts one point from the score x"""
 return x - 1

def subtract_one_list(x):
 """Returns a new list with the scores lowered by 1"""
 new_list = [] # empty list
 for item in x:
 lower_score = subtract_one(item)
 new_list.append(lower_score) # appends element
 return new_list

def subtract_one_to_all(x):
 ... # have fun :D

Functions

Functions can take no input or return no output.

def no_input():
 return 10

def no_return(x):
 print(x)

def no_input_and_return():
 print("I will return nothing.")

result = no_input_and_return() # returns None

Functions

Functions can take multiple parameters as input and return multiple
results.

two input parameters
def concatenate_strings(s1, s2):
 return s1 + s2

return two results
def sum_and_subtract_10(x):
 return 10+10, 10-10

Scope

The variables inside the function are only accessible within the
function. This is referred as scope.

two input parameters
def concatenate_strings(s1, s2):
 print(s1) # works

a = "aa"
b = "bb"
concatenate_stings(a, b)
print(s1) # gives error

Exercise

Write four functions that perform the mathematical operations sum,
product, division, subtraction. They have to take as input two
numbers and return the result (don't call them the same as built-in
functions!).

Built-in functions

Python has many built-in functions.

RECOMMENDED: DO NOT CALL VARIABLES OR FUNCTIONS
WITH BUILT-IN FUNCTION NAMES!!!

x = [0, -1, 2, -10]
m = min(x) # finds the minimum
l = len(x) # finds length

Libraries

import math
x = 0
s = math.sin(x)

import math.sin
s = math.sin(x) # imports only the module 'sin'

from math import sin
s = sin(x) # can be used without specifying the library
name

import math as m
s = m.sin(x) # uses an alias for the library

Exercise

Write a snippet that computes the area of a circle, given the radius:

import math.pi

...

Install libraries

External libraries can be installed through the python packet
managers. The most used ones are conda and pip.

conda install pip
pip install numpy

