
Industrial Software Development

Tutoring sessions

Tutor: Maura Pintor (maura.pintor@unica.it)

Exercises

1. Write a function that takes every element in a list and print its type. (5
minutes)

2. Write a function that creates one dictionary given a list of keys and a
list of values. (5 minutes)

3. Write a function that finds the minimum value of each list contained in
a dictionary. Write it with and without using the min function. (10
minutes)

4. Write the guess_number function that accepts an input from the
user and gives suggestions until the secret number is guessed. (10
minutes)

Advanced Python

Python Classes / Objects

Objects are complex Python structures, with their properties and
methods.
property: variables stored in the object
method: functions that are accessible from the object
Classes are object creators, they define the blueprint of the object.

Python Classes / Objects

class Student: # class
 name = "John"
 age = 20

student = Student() # object = instance of the class
name = student.name

The __init__ function

All classes have a function called __init__(), which is always
executed when the class is being initiated.
We can use the __init__() function to assign values to object
properties, or other operations that are necessary to do when the
object is being created.

The __init__ function

Within the class, we can refer to self to get (or assign) attributes
and methods stored in the class.

The __init__ function

class Student: # class
 def __init__(self, name, age): # self is passed as
input
 self.name = name # store attributes in self
 self.age = age

student = Student('John', 20) # now we can pass values
here
name = student.name

The __init__ function

Now we can define methods and access attributes stored in self.

class Student: # class
 def __init__(self, name, age): # self is passed as
input
 self.name = name # store attributes in self
 self.age = age

 def print_info(self):
 # access the attributes of the object
 print(f"Student {self.name} is {self.age} years
old.")

student = Student('John', 20) # now we can pass values
here
student.print_info()

Inheritance

Inheritance allows us to define a class that inherits all the methods
and properties from another class.

Person

+name
+surname

+walk(target)

Student

+student_id

Inheritance

class Person:
 def __init__(self, name, surname):
 self.name = name
 self.surname = surname

 def walk(self, target):
 print(f"{self.name} {self.surname} is walking to
{target}")

Inheritance

class Student(Person):
 def __init__(self, name, surname, student_id):
 self.student_id = student_id
 super().__init__(name, surname) # calls method
from parent

 def print_info(self):
 print(f"Student: {self.name} {self.surname} ID:
{self.student_id}")

st = Student("John", "Doe", "12345")

st.walk("the store") # inherits parent method
st.print_info()

Abstract objects and methods

We can define a class that is not supposed to be ever instantiated,
but defines a blueprint for creating other classes.
The other classes cannot be instantiated if they don't implement at
least this method.

class Animal:
 def talk(self):
 # this method is not implemented yet
 pass

class Human(Animal):
 def talk(self):
 print("I can say words")

class Dog(Animal):
 def talk(self):
 print("I can bark")

Abstract objects and methods

Sometimes you will find also the ... instead of pass.

class Animal:
 def talk(self):
 # this method is not implemented yet
 ...

Checking if an object is an instance of a class

h = Human()
print(isinstance(h, Human))
print(isinstance(h, Dog))
print(isinstance(h, Animal))

Exercises with classes (20 minutes)

1. Write a Python class Vehicle with instance attributes max_speed
and current_speed, that are passed when creating the objects. Set
the default value of max_speed to 200.

2. Implement the method set_speed of the class, that takes as input
the desired speed and sets current_speed equal to it. Remember
to check if the target speed is greater than max_speed, and if it is,
print a message to the user and set the speed to max_speed
instead.

3. Create a Python class Bus that inherit the Vehicle class and has
the additional attribute max_capacity and occupied_seats.

Exercises with Python classes

We can use now classes from external libraries. Let's use the
turtle module.

import turtle

t = turtle.Turtle() # this is a python object
t.forward(100) # calls a method from this class

Turtle module

We can make it more user-friendly by using another class that works
together with the Turtle class. Don't worry about this part now, it is
sufficient to add a few lines at the beginning and end of our script.

import turtle

wn = turtle.Screen() # class Screen

t = turtle.Turtle() # class Turtle

t.forward(100) # method of class Turtle
wn.exitonclick() # method of class Screen

Turtle module

t.shape("turtle") # changes the shape of the turtle
t.color("green") # changes the shape of the turtle

Turtle module

Let's draw a square with our turtle!

Now implement it with a for loop.

t.forward(100)
t.left(90)
t.forward(100)
t.left(90)
t.forward(100)
t.left(90)
t.forward(100)

Turtle module

Exercise: implement a function that takes as input a turtle instance
and the number of sides and draws a polygon. Remember that the
sum of the internal angles of a regular polygon is (180*(sides -
2)).

Polygon with the Turtle module

def draw_polygon(t, sides=3):
 if sides < 3:
 print("Cannot draw polygon with less than three
sizes!")
 angles = (180 * (sides - 2)) / sides
 for _ in range(sides):
 t.forward(100)
 t.right(180 - angles)

Exercise

Implement a class called MyTurtle that creates a red turtle instead
of the default turtle. Use inheritance to keep all the existing
functionalities of the Turtle class. Pass it to the function just
implemented and check that it still works, but with our custom turtle.

Raise errors

What if a user asks for a polygon with less than three sides? We can
raise errors in our code. They are nicer than print statements because
the block the execution and return the error to the user.

def draw_polygon(t, sides=3):
 if sides < 3:
 raise ValueError("Cannot draw polygon with less
than three sizes!")
 angles = (180 * (sides - 2)) / sides
 for _ in range(sides):
 t.forward(100)
 t.right(180 - angles)

Try-except constructs

If we don't know if the error might happen or not, we can use the try-
except construct.

try:
 draw_polygon(t, sides=-1)
except ValueError: # specific except
 draw_poligon(t, sides=5)
except: # vague except
 draw_polygon(t, sides=10)

