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Poisoning attacks [5]: the attacker controls a certain amount of 
training data, thus influencing the trained model and ultimately the 
predictions at test time on the testing set

Evasion attacks [4]: small manipulations of testing data points that 
result in misprediction at testing time on those points

Previous works [1, 2, 3] have shown empirical evidence that adversarial 

attacks can transfer between models, however there is little 

understanding on the underlying reasons of this phenomenon.

  

Formal definition of transferability

Investigation on test-time (evasion) and training-time 

(poisoning) attacks

Definition of new metrics for understanding when and why 

adversarial attacks transfer

Goals

Motivation

R: gradient alignment 
measures black-box to white-box 
loss increment ratio

V: variability of the loss landscape
Evaluates the variability of the surrogate classifier under training data 
resampling

S: size of input gradients
measures the vulnerability of 
the target model (white-box loss 
increment)

loss increment in the target given by the 

attack crafted with the surrogate model

perturbation computed with the surrogate model

loss attained by the target model 

on the adversarial point crafted 

against the surrogate
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0.14 0.35 0.19 0.29 0.13 0.25 0.26 0.32 0.28 0.32

0.32 0.88 0.42 0.63 0.26 0.50 0.68 0.83 0.67 0.79

0.18 0.45 0.25 0.37 0.18 0.32 0.35 0.42 0.36 0.41

0.26 0.64 0.35 0.51 0.24 0.43 0.49 0.59 0.51 0.58

0.12 0.26 0.16 0.23 0.18 0.28 0.21 0.25 0.21 0.24

0.22 0.49 0.29 0.41 0.27 0.47 0.39 0.46 0.40 0.44

0.25 0.69 0.33 0.50 0.21 0.40 0.67 0.75 0.58 0.66

0.30 0.83 0.39 0.58 0.25 0.47 0.75 0.87 0.66 0.78

0.26 0.68 0.34 0.51 0.22 0.41 0.57 0.67 0.65 0.68

0.30 0.81 0.39 0.58 0.24 0.46 0.67 0.79 0.68 0.80

Gradient alignment (R) and perturbation correlation (Pearson 
correlation coefficient between white-box and black-box 
perturbation) for evasion attacks on MNIST89. Rows indicate the 
surrogate classifier and columns indicate the target
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The size of the input gradients 
(S) is an indication of how much 
the target model is implicitly 
vulnerable against adversarial 
examples, including the ones 
crafted with the surrogate 
model.

Test error under attack vs. 
average size of input gradients 
(S) for low- (denoted with 'x') 
and high-complexity (denoted 
with 'o') classifiers

The main factors contributing to transferability 
are the intrinsic vulnerability of the target model 
and the complexity of the surrogate. The 
variability of the loss landscape of the surrogate 
under different training set resamplings can 
influence the stability of the solution of the 
optimization problem.

Average transfer rate vs 
variability of the loss 
landscape (V). Low-
complexity models are 
denoted with 'x' and high-
complexity models are 
denoted with 'o'. 
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Evasion: decreasing complexity of the surrogate model by properly adjusting the hyperparameters of its learning algorithm provides adversarial 
examples that transfer better to a range of models
Poisoning: the best surrogates are generally models with similar levels of regularization as the target model
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Code available at: https://gitlab.com/secml/secml
Paper: Demontis et al., Why do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks, USENIX 2019

Future work: framework for understanding causes of success and failure of adversarial attacks against a model, comparing attacks with 
quantitative metrics in a competitive but fair environment
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