
WEB SERVERSWEB SERVERS
ISD COURSEISD COURSE

Maura Pintor - maura.pintor@unica.it

1

mailto:maura.pintor@unica.it

PART 0 : WEB SERVERS BASICSPART 0 : WEB SERVERS BASICS

2

WEB SERVER FOR THE USERWEB SERVER FOR THE USER

More info .here

3

https://en.wikipedia.org/wiki/Web_server

WEB SERVER FOR THE DEVELOPERWEB SERVER FOR THE DEVELOPER

More info .here

4

https://en.wikipedia.org/wiki/Front_and_back_ends

APIAPI

More info .here

5

https://www.youtube.com/watch?v=s7wmiS2mSXY
https://en.wikipedia.org/wiki/Application_programming_interface

HTTPHTTP

More info .here

6

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

LOCALHOSTLOCALHOST

More info .here

7

https://en.wikipedia.org/wiki/Localhost

DEPLOYDEPLOY

deploy resources = make them ready to be used

8

PART I : GETTING STARTEDPART I : GETTING STARTED

9

We will run a simple web server that will show to
logged-in users a webpage.

We will cover:

web server setup
connection to database
login logic

10

We will not cover:

But you should have a look into those.

deployment
bootstrap
security enhancements

11

https://flask.palletsprojects.com/en/1.1.x/deploying/
https://getbootstrap.com/
https://www.keycdn.com/blog/web-application-security-best-practices

Prerequisites:

install python3 (hope you already have it)
install pip (same as above)
install Flask

pip install Flask

12

Now we are going to create the directory structure.

We need the following tree:

|* FlaskTutorial

|----* app

|--------* routes

13

Let's create a new file inside the app folder, named
__init__.py. This is the file that is run when we

import the app module of our application. At first we
will only use it as a python file, but this is a common

standard for deployment.

14

15

16

Inside the file, copy the following code:

The variable __name__ is a Python predefined
variable, which is set to the name of the module being
used. Another important thing to notice is that the
routes module is imported in the end of the script. We
will see why in a minute.

from flask import Flask

app = Flask(__name__)

from app import routes

17

The routes are the different URLs that the application
provides.

The route defines the backend logic to be executed
when a client requests a given URL through the
frontend.

URL --> mapped to --> handler

handler --> calls --> views (python functions)

18

19

Now we can create a handler. Let's create
app/routes/hello.py.

The two lines @app.route('...') are decorators,
special modifiers for python functions. In this case
they are used to associate the URL given as argument
and the function.

from app import app

@app.route('/')

@app.route('/index')

def index():

 return "Hello, World!"

20

Remember the line from routes import *? Here
we need to create the routes/__init__.py file for
allowing the import of our routes, from inside the files.

The import that we issued at the end of the other file
was there because we have to avoid cyclic imports.

from .hello import *

21

CYCLIC IMPORTSCYCLIC IMPORTS

More info .here

22

https://stackoverflow.com/a/744403

We have almost completed the initial setup. We have
to create the main module at the top level. Create and
edit the file runserver.py, adding the following
lines:

This will trigger the __init__ that we defined inside
the app module, running the server.

from app import app

23

30 SECONDS BREAK30 SECONDS BREAK
questions?

In the meanwhile, double check your directory
structure:

|* FlaskTutorial

|----* app

|--------* routes

|------------* __init__.py

|------------* hello.py

|--------* __init__.py

|----* runserver.py

24

RUNNING THE SERVERRUNNING THE SERVER
For now we have only one folder in the repo (app),
which will be automatically loaded and run, but we

want to make sure that Flask always loads the correct
application in case we create a more complex app.

25

Open a terminal in the FlaskTutorial folder and
issue the command:

(see more on environment variables)

From the same terminal, finally run the server:

export FLASK_APP=app

export FLASK_ENV=development

here

flask run

26

https://medium.com/chingu/an-introduction-to-environment-variables-and-how-to-use-them-f602f66d15fa

Read the output.

Let's comment this line by line.

 * Serving Flask app "app" (lazy loading)

 * Environment: development

 * Debug mode: on

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

 * Restarting with stat

 * Debugger is active!

 * Debugger PIN: 273-374-165

27

Flask is telling us the running app. The lazy loading is
due to the debug mode, it will load the resource only if

they are requested.

 * Serving Flask app "app" (lazy loading)

28

Here we know the environment variable worked. The
debug + lazy loading will refresh the app when we

apply changes and the page is requested.

 * Environment: development

 * Debug mode: on

29

This is the address where we can find our running app
(remember about localhost?).

Click on the !

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

link

30

http://127.0.0.1:5000/

This line will appear every time we apply changes and
save the application. It's a log for the server, which is

restarting.

 * Restarting with stat

31

Ignore these lines, no need to understand the
meaning.

 * Debugger is active!

 * Debugger PIN:

32

Notice that when we clicked on the link, a new line
appeared:

This is a logging line, which tells that there's been a
GET request, whith protocol HTTP, to the URL / in the
localhost (127.0.0.1), and the response code is
200.

127.0.0.1 - - [07/Oct/2019 12:15:41] "GET / HTTP/1.1" 200 -

33

Congratulations, you've issued your first request to a
web server!

34

Actually.... Everything your browser does is HTTP
requests

(try this at home)

And a�er opening the console, type in
your address bar.

firefox --> ctrl + shift + i --> Network

chrome --> ctrl + shift + j --> Network

www.google.it

35

http://localhost:1948/www.google.it

PART II: TEMPLATESPART II: TEMPLATES

36

Templates are used to share the aspect of the
application across all pages of our application. This is

important for the user experience.

37

Look at this code (DON'T COPY):
from app import app

@app.route('/')

@app.route('/index')

def index():

 user = {'username': 'User'}

 return '''

<html>

 <head><title>Home Page - Microblog</title></head>

 <body>

 <h1>Hello, ''' + user['username'] + '''!</h1>

 </body>

</html>'''

38

The lines:

Are written in HTML inside a string in Python. It will be
rendered automatically by Flask. Of course we cannot
expect to write our whole application like this.

<html>

 <head>

 <title>Home Page - Microblog</title>

 </head>

 <body>

 <h1>Hello, ''' + user['username'] + '''!</h1>

 </body>

</html>

39

As the application grows, we should prepare ourselves
to organize our app in a smart way. We can use

templates to separate the application logic from the
rendering part.

We will write our templates in separate files, stored in
a templates folder, inside the application package.

40

41

Create templates/index.html

You can see there is something weird with this html.
Those {{ ... }} enclosed things are not really
familiar.

<html>

 <head>

 <title>{{ title }} - Microblog</title>

 </head>

 <body>

 <h1>Hello, {{ user.username }}!</h1>

 </body>

</html>

42

Those are variables, that we can pass through the
flask interface. They are now placeholders that will

be filled with dynamic content at runtime.

43

44

Get back to routes/hello.py and avoid that ugly
html text.

from flask import render_template

from app import app

@app.route('/')

@app.route('/index')

def index():

 user = {'username': 'Maura'}

 return render_template('index.html',

 title='Home',

 user=user)

45

The operation that converts the template in actual
html is called rendering.

We use the function render_template for this,
passing in the values for our placeholders. Note that

we only need to provide the name of the file, since
Flask automatically knows where to find the

templates folder.

46

CONDITIONAL STATEMENTS AND LOOPSCONDITIONAL STATEMENTS AND LOOPS
IN TEMPLATESIN TEMPLATES

If we have to display a list of objects or display
something with a condition, it would be better to avoid

writing the html in the code.

47

We can add logic in our template with the following
blocks:

Remember the endif statement. This may not seem
natural if you use Python

{% if greeting %}

 <h1>{{ greeting }} {{user.username}}</h1>

{% else %}

 <h1>Hello {{user.username}}</h1>

{% endif %}

48

We can also use loops:
{% for student in students %}

 <div>

 <p>{{ students.name }} - ID: {{ students.id }}</p>

 </div>

{% endfor %}

49

Let's add the lines in templates/index.html:
<!DOCTYPE html>

<html lang="en">

<head><title>{{ title }} - Blog</title></head>

<body>

 {% if greeting %}

 <h1>{{ greeting }} {{ user.username }}</h1>

 {% else %}

 <h1>Hello {{ user.username }}</h1>

 {% endif %}

 {% for student in students %}

 <div>

 <p>{{ student.name }}: {{ student.id }}</p>

 </div>

 {% endfor %}</body></html>

50

Of course, we should edit our routes/hello.py as
well:

from flask import render_template

from app import app

@app.route('/')

@app.route('/index')

def index():

 user = {'username': 'Maura'}

 students = [

 {'name': 'A', 'id': 1},

 {'name': 'C', 'id': 111},

]

 return render_template('index.html', title='Home',

 user=user, students=students,

 greeting="Yo")

51

IF YOU DON'T LIKE TO WASTE TIMEIF YOU DON'T LIKE TO WASTE TIME
LOOKING FOR AN INVISIBLE SYNTAXLOOKING FOR AN INVISIBLE SYNTAX

ERRORERROR
Remember the single { in the logic control and the

double {{ in the variable getter.

52

TEMPLATE INHERITANCETEMPLATE INHERITANCE
Would you imagine to create a website always

rewriting your html?

What if we want all of our pages to have a bar in the
top, and later we decide to change the color of the bar?

How much time would we waste replacing the code in
every single html file?

What if we forget some?

53

THAT'S WHY WE LIKE TO REUSETHAT'S WHY WE LIKE TO REUSE
OUR HTML.OUR HTML.

54

We create a file called templates/base.html. This
file will be structured as:

HEADER

CONTENT

FOOTER

Where the content is the only part that changes for
each page. Let's first see how it works.

55

Here is the html templated/base.html.
<!DOCTYPE html>

<html lang="en">

 <head><title>{{ title }} - Blog</title></head>

 <body>

 {% if greeting %}

 <h1>{{ greeting }} {{ user.username }}</h1>

 {% else %}

 <h1>Hello {{ user.username }}</h1>

 {% endif %}

 {% block content %}{% endblock %}

 </body>

</html>

56

Here is templates/index.html updated:
{% extends "base.html" %}

{% block content %}

{% for student in students %}

 <div>

 <p>{{ student.name }} - ID: {{ student.id }}</p>

 </div>

{% endfor %}

{% endblock %}

57

We have introduced another Template element, the
{% block ... %}{% endblock %}. This control
statement defines:

in the base: the place where the derived template,
inheriting from base.html, will place itself.
in the child: the content to fit in the block in the
base template. The extends statement will
establish the inheritance link between the two
templates.

58

Now it's time to add another route.

BUT YOU WILL DO IT YOURSELFBUT YOU WILL DO IT YOURSELF

59

ADD ANOTHER ROUTE (1)ADD ANOTHER ROUTE (1)
add route file routes/mypage.py

give a path to your page: /mypage
remember to give a different name to the
function (!=index())

add import in the route routes/__init__.py

60

ADD ANOTHER ROUTE (2)ADD ANOTHER ROUTE (2)
create templates/mypage.html

inherit from templates/base.html
fill in the block

61

ADD ANOTHER ROUTE (3)ADD ANOTHER ROUTE (3)
visit the page! -->
bonus trick: add a link between the pages Back

to Homepage

localhost:5000/mypage

62

localhost:5000/mypage

PART III: WEB FORMSPART III: WEB FORMS

63

Ok, our application can now show us some content.

We want to add the possibility to accept input from the
user.

For that, we will use web forms.

64

WE ARE GOING TO IMPLEMENT THEWE ARE GOING TO IMPLEMENT THE
FOLLOWING LOGIC FOR LOGGING INFOLLOWING LOGIC FOR LOGGING IN

USERSUSERS

65

FLASK FLASK
Flask-wtf is a Flask extension, that means that we can
live without that but if we want to use this very useful
functionality we will have to install it.

WTFWTF

pip install flask-wtf

66

https://wtforms.readthedocs.io/en/stable/crash_course.html

Before starting with forms, let's talk about
configuration. We will have to set several

configuration variables for our app. We could also just
define them in our runserver.py script, but they
can become hard to manage and change if our app

becomes big.

67

That's why developers create configuration files,
where all configuration variables can be collected and
loaded by our app without need to search for them in

the code.

68

69

Create a configuration file, config.py, in the top-
level directory of our app:

|* FlaskTutorial

|----* app

|--------* routes

|--------* templates

|----* runserver.py

|----* config.py (NEW!)

70

As we need new configuration items, we can collect
them all here so that they are easy to find and change.

import os

class Config(object):

 SECRET_KEY = os.environ.get('SECRET_KEY') or "kkkkkkey!!"

71

Let's go back to this "secret key" thing... Flask uses this
key as the cryptographic key for generating signatures

and token. This extension uses the key to protect our
app from an attack called

 (CSRF - pronounced sea surf).
"Cross-Site Request

Forgery"

72

https://en.wikipedia.org/wiki/Cross-site_request_forgery

In a CSRF attack, the attacker's goal is
to cause an innocent victim to

unknowingly submit a maliciously
cra�ed web request to a website that

the victim has privileged access to.

73

There pattern os.environ.get('SECRET_KEY')
or 'my very secret key' can allow us to use
as first choice an environment variable (remember
them?), and if this is not defined we have a fallback

option as an hard-coded string.

74

We can add the configuration class to our flask
application just adding one line in our __init__.py
script:

from flask import Flask

from app.config import Config

app = Flask(__name__)

app.config.from_object(Config)

from app.routes import *

75

Now that we have our configuration done, we can
finally head to the creation of a simple web form.

We can create a template form as a python class, just
for keeping things structured. Create a file forms.py

in the app directory.

76

from flask_wtf import FlaskForm

from wtforms import (StringField, PasswordField,

 BooleanField, SubmitField)

from wtforms.validators import DataRequired

class LoginForm(FlaskForm):

 username = StringField('Username',

 validators=[DataRequired()])

 password = PasswordField('Password',

 validators=[DataRequired()])

 remember_me = BooleanField('Remember Me')

 submit = SubmitField('Login')

77

Note the particular classes used for each input space.

StringField

PasswordField

BooleanField

SubmitField

78

Another important thing to notice is the validators
field, that optionally lets us define some validation

method. The DataRequired validator only checks
that some data is present at the moment of the

submission.

79

Now we have to render this form as a webpage. The
fields defined in our class already know how to render

themselves, so we just have to include them in our
html.

Go ahead and create a templates/login.html

80

{% extends "base.html" %}

{% block content %}

 <h1>Login</h1>

 <form action="" method="post" novalidate>

 {{ form.hidden_tag() }}

 <p>

 {{ form.username.label }}

 {{ form.username(size=32) }}

 </p>

 <p>

 {{ form.password.label }}

 {{ form.password(size=32) }}

 </p>

 <p>

 {{ form.remember_me() }} {{ form.remember_me.label }}

 </p>

 <p>{{ form.submit() }}</p>

 </form>

{% endblock %}

81

Remember we are extending the template
templates/base.html. This template expects to

receive a LoginForm object as argument, which we
reference inside the html as form.

82

Pay attention to this line:

The action tells the browser to which url
submit the data (we use this same url so the field
is empty).
The method field is to specify the method of the
HTTP request

The novalidate attribute is specified here
because the validation will be performed by the
web app, not by the browser.

<form action="" method="post" novalidate>

83

Now, there is another weird line...
{{ form.hidden_tag() }}

84

This line is used for generating a hidden token that is
used to protect the form against CRSF attacks. Flask
will handle everything nicely as long as:

there is a hidden tag in the form
there is a specified secret key in the config

85

Now we have to link the form in our application.
Create routes/login.py.

from flask import render_template

from app import app

from app.forms import LoginForm

@app.route('/login')

def login():

 # instantiate a login form

 form = LoginForm()

 return render_template('login.html',

 title='Login',

 form=form)

86

We can include the login button in our navigation bar.
Edit templates/base.html:

Comment the user part for now ...

<div>

 My Page:

 Home

 Login

</div>

87

Go and try your login form. Of course you can't expect
that everything runs smoothly :D

88

ACCEPTING DATA FROM FORMSACCEPTING DATA FROM FORMS

METHOD NOTMETHOD NOT
ALLOWED ...ALLOWED ...

89

This is Flask telling us that we are trying to send
information through a POST method, but we forgot to

define it in the code!

90

HTTP METHODSHTTP METHODS

More info here

91

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

from flask import render_template, flash, redirect

@app.route('/login', methods=['GET', 'POST']) # <<<<<<<<<<<<

def login():

 form = LoginForm()

 if form.validate_on_submit():

 # todo: we will handle this later

 return redirect('/index')

 return render_template('login.html',

 title='Login',

 form=form)

92

Now we can accept user data and validate them. First,
let's have a look at the line:

The methods argument tells Flask that we want to use
both POST and GET methods in this same url.

@app.route('/login', methods=['GET', 'POST'])

...

93

QUICK RECAPQUICK RECAP
GET: return information to the client (browser)

POST: client (browser) sends information to the server

We can always send information with GET, but that is
probably a bad idea...

94

Do you really want to store in the server this line?
"GET /login HTTP/1.1" 200 - login?user=myUser&pass=MyPassword

95

This line accepts the input and validates it. This
method returns True only if the browser sends a
POST request AND if the validation methods in all the
fields run smoothly.

If the validation fails, it will return False, so we will
have to handle that later.

if form.validate_on_submit():

 ...

96

You see now that if we try to validate the form without
filling the required fields, the actual behavior will be

that the server re-display the form.

97

Of course we want to show some information to the
user, so that she/he can understand what happened

with the login.

98

The form validators already have some pre-defined
error message, but the are not actually rendered in our

form.

99

{% extends "base.html" %}

{% block content %}

 <p>

 {{ form.username.label }}

 {{ form.username(size=32) }}

 {% for error in form.username.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

 <p>

 {{ form.password.label }}

 {{ form.password(size=32) }}

 {% for error in form.password.errors %}

 [{{ error }}]

 {% endfor %}

 </p>

{% endblock %}

100

The only change here is in the for loops that display all
error messages added by the validators. The error
messages in the form can be get through form.

<field_name>.errors.

We are using a form because the errors are a list. This
is because fields can have more than one validator.

101

Let's try to generate the errors!

http://127.0.0.1:5000/login

102

http://127.0.0.1:5000/login

JUST SOME SMALL IMPROVEMENT ...JUST SOME SMALL IMPROVEMENT ...

GENERATING LINKS INSIDE THEGENERATING LINKS INSIDE THE
APPLICATIONAPPLICATION

103

Now we have used the line:

Which is for redirecting the browser to the resource
/index.

return redirect('/index')

104

Many times you may want to change your links.

If you decide to do some refactoring, you will have to
replace all links in your application.

105

One solution is to use a function that creates URLs
inside Flask, with its internal mapping to view
functions.

will generate an URL for the view function index. The
argument is the endpoint name, which is the name of
the view function.

url_for('index')

106

Another important aspect of this separation of URL
and view function is the generation of dynamic urls.

107

Let's go and fix all the urls that we placed in our app:

app/templates/base.html
app/routes.py

108

Notice that in the html file we will have to use the
double "{"

 <div>

 My Page:

 Home

 Login

 </div>

109

PART IV: DATABASESPART IV: DATABASES

110

We want our server to remember the registered users.
In order to do so we have to connect to a database.

For this application we will use a simple non relational
database, called Mongo.

111

Mongo elements:

112

pip install flask_mongoengine flask_login

113

114

Now we need to add our database settings to our
config file:

database configuration

MONGODB_HOST = "localhost"

MONGODB_PORT = 27017

MONGODB_USERNAME = "username"

MONGODB_CONNECT = True

MONGODB_DB = "my_app_db"

115

The complete db connection string is called db URI,
and it is needed by the library for connecting to the
right source.

It contains (at least):

the driver name mongodb
the host (server on which the db is hosted)

in this case our localhost
the port where the db is accessible

116

from flask import Flask

from flask_mongoengine import MongoEngine

from app.config import Config

app = Flask(__name__)

app.config.from_object(Config)

db = MongoEngine(app)

from app.routes import *

117

 will connect our application to the
specified database and expose the db attribute in the

app. We can use it directly in views.

Mongoengine

118

https://mongoengine-odm.readthedocs.io/tutorial.html

ORM = OBJECT-RELATIONAL MAPPERSORM = OBJECT-RELATIONAL MAPPERS
We have to create a model for storing our data in a

structured way.

For example, all users will have a username, password
and additional information such as the email for

password recovery, phone number for two factor auth
etc.

119

Let's create a file models.py in our source root,
where runserver.py is located.

from app import db

class User(db.Document):

 meta = {'collection': 'users'}

 email = db.StringField(max_length=30)

 password = db.StringField()

120

You probably noticed that the fields are the same that
we have in our form. This will of course come in handy

when we have to use the information in the form for
logging in the user.

121

Ok, but we don't have users yet. We need to create a
Sign In form.

122

EXERCISE: CREATE THE SIGN-IN FORM.EXERCISE: CREATE THE SIGN-IN FORM.
(HINT: START FROM THE LOGIN FORM)(HINT: START FROM THE LOGIN FORM)

forms.py

routes/signin.py

templates/signin.html

button in the navbar (base.html)
routes/__init__.py

123

Other improvements:

Let's add the email field to the registration form. The
email may be used for password recovery or to send
nice emails with updates (we won't cover them in this
course).

124

IMPORTANT: ALWAYS ADD THEIMPORTANT: ALWAYS ADD THE
(ANNOYING) EMAIL VALIDATION(ANNOYING) EMAIL VALIDATION
PROCESS IN THE WEBSITES.PROCESS IN THE WEBSITES.
It will prevent users to insert other people's mails in
the field (and fill their inbox with unwanted spam).

125

It's time to try out the new path we added. (remember
to try out also the validation of the email field!)

from wtforms.fields.html5 import EmailField

from wtforms.validators import Email

wtforms email field and validator

email = EmailField('Email address',

 validators=[DataRequired(), Email()])

126

STORING THE USER DATA IN MONGO DBSTORING THE USER DATA IN MONGO DB
Now we have to implement the following logic for
signing-in:

valid email + valid username + not in database:
user info should be stored.
valid email already registered: error (email
already in use).
valid username already registered: error
(username already in use).

127

Inside routes/signin.py:
if form.validate_on_submit():

 user = User(email=form.email.data,

 username=form.username.data,

 password=form.password.data)

 user.save()

128

For now we are just adding a user, of course we cannot
store the password as it is.

129

Let's verify that the user is correctly added. Connect to
a mongodb shell using a terminal:

mongo

use my_app_db

coll = db.users

coll.find()

130

Now let's add the check for username and email. In
routes/signin.py:

from flask import abort

if form.validate_on_submit():

 same_email = User.objects(email=form.email.data)

 if len(same_email) > 0:

 abort(403, "Forbidden. Email already in use.")

 else:

 user = User(email=form.email.data,

 username=form.username.data,

 password=form.password.data)

 user.save()

131

EXERCISE: ADD THE SAME CHECK FOREXERCISE: ADD THE SAME CHECK FOR
"USERNAME ALREADY IN USE"."USERNAME ALREADY IN USE".

132

WHAT COULD GO WRONG?WHAT COULD GO WRONG?

133

Credits: www.codewell.com

134

https://www.codedwell.com/post/64/old-school-web-security-fail

We must also hide the password when we store it. It is
not a good strategy to store it directly as it is inserted.

135

HASHING PASSWORDSHASHING PASSWORDS

Credits: medium article

136

https://medium.com/developer-diary/net-core-3-0-preview-4-web-api-authentication-from-scratch-part-2-password-hashing-7e43b64cbe25

HASHING PASSWORDSHASHING PASSWORDS
from werkzeug.security import generate_password_hash

hashpass = generate_password_hash(form.password.data,

 method='sha256')

user = User(email=form.email.data,

 username=form.username.data,

 password=hashpass)

137

LET'S TEST THE PASSWORD HASHINGLET'S TEST THE PASSWORD HASHING
1) sign in a new account.

2) enter mongo shell and see the registered users.

3) you should see a user with the hashed password.

138

Now we can finally add the logic for logging in a
registered user. We will edit routes/login.py

from werkzeug.security import check_password_hash

from flask_login import login_user

...

if form.validate_on_submit():

 user = User.objects(username=form.username.data)

 if len(user) > 1:

 if check_password_hash(user.password,

 form.password.data):

 login_user(user)

 return redirect(url_for('index'))

 else:

 abort(404, "User not found. Please register.")

...

139

The method check_password_hash will match the
hash of the password submitted by the user with the

password stored at registration.

140

The method login_user will set the user logged in.
Let's add the login_user method also a�er a user

registers.

In order to use login_user we have to provide a
method for flask to handle the user logins.

More information .here

141

https://flask-login.readthedocs.io/en/latest/#how-it-works

We add the following to __init__.py:
from flask_login import LoginManager

login_manager = LoginManager(app)

142

Does not work yet. This is because the User model
that we defined does not have the attributes required
for checking the login.

We have to add to the inheritances of User the
class UserMixin.

mixin

from flask_login import UserMixin

class User(db.Document, UserMixin):

 ...

143

https://www.ianlewis.org/en/mixins-and-python

Another small change to models.py and we are
good to go. Here we provide a method for the Login
Manager to load the object that contains the user.

from app import login_manager

@login_manager.user_loader

def load_user(user_id):

 return User.objects(pk=user_id).first()

144

Now let's remove all trash we have in the database ...
mongo

use my_app_db

db.dropDatabase()

145

Ok now we can log in. In the next sections we will
create a view that is only accessible to logged in users

and a logout button.

146

LOGIN REQUIREDLOGIN REQUIRED
Edit routes/mypage.py and add the following
decorator:

from flask_login import login_required

@login_required

@app.route('/mypage')

def mypage():

 ...

147

Now let's also use the user information.
from flask_login import login_required, current_user

def mypage():

 user = current_user

 return render_template('mypage.html',

 title='Home',

 user=user,

 greeting="Yo")

148

USER LOGOUTUSER LOGOUT
Let's create a view routes/logout.py for logging
out the user:

from flask import url_for

from flask_login import login_required, logout_user

from app import app, redirect

@app.route("/logout")

@login_required

def logout():

 logout_user()

 return redirect(url_for('index'))

149

We don't need to create an html file related to the
logout, since we can directly render the index page

again.

But we need to change base.html and add the
button in our nav bar.

<div>

 Home

 {% if not current_user.is_authenticated %}

 Login

 Sign In

 {% endif %}

 {% if current_user.is_authenticated %}

 Logout

 {% endif %}

</div>

150

ERROR HANDLINGERROR HANDLING
Try to log out and visit

http://localhost:5000/does-not-exist

151

http://localhost:5000/does-not-exist

We want to add a custom template to our error pages.
For doing so, create routes/errors.py

from flask import render_template

from app import app

@app.errorhandler(404)

def page_not_found(e):

 # note that we set the 404 status explicitly

 return render_template('404.html'), 404

152

Now create templates/404.html
{% extends "base.html" %}

{% block content %}

 <h1>Page Not Found</h1>

 <p>What you were looking for is just not there.

 <p>Go somewhere else.

{% endblock %}

153

Finally, add the import in routes/__init__.py.

Navigate again to

http://localhost:5000/does-not-exist

154

http://localhost:5000/does-not-exist

EXERCISE: CREATE A BLOGEXERCISE: CREATE A BLOG
create a page /blog
redirect to that page a�er login and sign in
show comments stored in mongo
create /comment path (login required)
create a button for sending new comments
logged in users can post comment and they will
be displayed in the blog

155

TO-REMEMBER (DO NOT ERASE AFTER EXAM) CHECKLIST:TO-REMEMBER (DO NOT ERASE AFTER EXAM) CHECKLIST:

Web server
Frontend vs. Backend
API
Deployment and Localhost
URI and URL
Requests
Static vs. Dynamic website
Rendering and Templates
Connection to databases

156

THE ENDTHE END

157

