WEB SERVERS

ISD COURSE

Maura Pintor - maura.pintor@unica.it

mailto:maura.pintor@unica.it

PART 0 : WEB SERVERS BASICS

WEB SERVER FOR THE USER

Request Request
Response ¢ Reseonse I ll

J""EC
Web Browsers Internet Web Serve S

More info here.

https://en.wikipedia.org/wiki/Web_server

WEB SERVER FOR THE DEVELOPER

Frontend

@ Users see
€ 20% of total effort

Backend

an Usersdon't see
£, 80% of total effort

D) Repetitive

More info here.

https://en.wikipedia.org/wiki/Front_and_back_ends

API

-

) S

More info here.

https://www.youtube.com/watch?v=s7wmiS2mSXY
https://en.wikipedia.org/wiki/Application_programming_interface

HTTP

GET /doc/test.html HTTP/1.1 — > Request Line 3

Host: www.testl181.com
Accept: image/gif, image/jpeg, */* Request
Accept—Langugge: entu5 Request Headers > Message
Accept-Encoding: gzip, deflate Header
User-Agent: Mozilla/4.0
Content-Length: 35 v,

> A blank line separates header & body
bookId=12345&author=Tan+Ah+Teck } Request Message Body

More info here.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

LOCALHOST

localhost

More info here.

https://en.wikipedia.org/wiki/Localhost

DEPLOY

ax___ A Push) Deploy _ @
/> R
GitHub | GitLab ™ A

deploy resources = make them ready to be used

PART | : GETTING STARTED

We will run a simple web server that will show to
logged-in users a webpage.

We will cover:

e web server setup
e connection to database
e login logic

We will not cover:

e deployment
e bootstrap
e security enhancements

But you should have a look into those.

https://flask.palletsprojects.com/en/1.1.x/deploying/
https://getbootstrap.com/
https://www.keycdn.com/blog/web-application-security-best-practices

Prerequisites:

e install python3 (hope you already have it)
e install pip (same as above)
e install Flask

pip install Flask

Now we are going to create the directory structure.

We need the following tree:

| * FlaskTutorial

|-——=* app
|- * routes

Let's create a new file inside the app folder, named
~_init .py.Thisisthefilethatis run whenwe
import the app module of our application. At first we
will only use it as a python file, but this is a common
standard for deployment.

FRONTEND

BACKEND

L

—/

FRONTEND

Routes

CEr

BACKEND

—/

Inside the file, copy the following code:

from flask import Flask
app = Flask(name)
from app import routes

Thevariable name isaPython predefined
variable, which is set to the name of the module being
used. Another important thing to notice is that the

routes module is imported in the end of the script. We
will see why in a minute.

The routes are the different URLs that the application
provides.

URL -=> mapped to —--> handler
handler --> calls -=> views (python functions)

The route defines the backend logic to be executed
when a client requests a given URL through the
frontend.

FRONTEND

4 ~
ﬁ hello.py

~ /

7 ™
P __nit__.py <

~ J

BACKEND

Now we can create a handler. Let's create
app/routes/hello.py.

from app import app

def index () :
return "Hello, World!"

The two lines Gapp.route ('...") are decorators,
special modifiers for python functions. In this case
they are used to associate the URL given as argument
and the function.

Remember theline from routes import *7?Here

we need to createthe routes/ init .pyfilefor
allowing the import of our routes, from inside the files.

from .hello import *

The import that we issued at the end of the other file
was there because we have to avoid cyclic imports.

CYCLIC IMPORTS

A - B means

init__ .py "A imports B"

More info here.

https://stackoverflow.com/a/744403

We have almost completed the initial setup. We have
to create the main module at the top level. Create and
editthe file runserver.py, adding the following
lines:

from app import app

Thiswill triggerthe init thatwe defined inside
the app module, running the server.

30 SECONDS BREAK

guestions?

In the meanwhile, double check your directory
structure:

| * FlaskTutorial

RUNNING THE SERVER

For now we have only one folder in the repo (app),
which will be automatically loaded and run, but we
want to make sure that Flask always loads the correct
application in case we create a more complex app.

Open aterminalinthe FlaskTutorial folderand
issue the command:

export FLASK APP=app
export FLASK ENV=development

(see more on environment variables here)

From the same terminal, finally run the server:

flask run

https://medium.com/chingu/an-introduction-to-environment-variables-and-how-to-use-them-f602f66d15fa

Read the output.

Serving Flask app "app" (lazy loading)

Environment: development

Debug mode: on

Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
Restarting with stat

Debugger i1s active!

Debugger PIN: 273-374-165

b D S R

Let's comment this line by line.

* Serving Flask app "app" (lazy loading)

Flask is telling us the running app. The lazy loading is
due to the debug mode, it will load the resource only if
they are requested.

* Environment: development
* Debug mode: on

Here we know the environment variable worked. The
debug + lazy loading will refresh the app when we
apply changes and the page is requested.

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

This is the address where we can find our running app
(remember about localhost?).

Click on the link!

http://127.0.0.1:5000/

* Restarting with stat

This line will appear every time we apply changes and
save the application. It's a log for the server, which is
restarting,.

* Debugger 1is active!
* Debugger PIN:

lgnore these lines, no need to understand the
meaning.

Notice that when we clicked on the link, a new line
appeared:

127.0.0.1 - - [07/0ct/2019 12:15:41] "GET / HTTP/1.1" 200 -

Thisis a logging line, which tells that there's been a
GET request, whith protocol HTTP, to the URL / in the
localhost (127.0.0.1),andtheresponse code is
200.

Congratulations, you've issued your first request to a
web server!

Actually.... Everything your browser doesis HTTP
requests

(try this at home)

firefox -——> ctrl + shift + 1 -——> Network
chrome -=> ctrl + shift +] -=> Network

And after opening the console, type www.google.it in
your address bar.

http://localhost:1948/www.google.it

PART II: TEMPLATES

Templates are used to share the aspect of the
application across all pages of our application. This is
important for the user experience.

Look at this code (DON'T COPY):

from app import app

@Qapp.route('/"')
@app.route('/index')
def index () :
user = {'username': 'User'}
return '''
<html>
<head><title>Home Page - Microblog</title></head>
<body>
<hl>Hello, '"'' + user|['username'] + '"''I</hl>
</body>
</html>"'""

The lines:

<html>
<head>
<title>Home Page - Microblog</title>
</head>
<body>
<hl>Hello, '"'' + user|['username'] + "'"''"I</hl>
</body>
</html>

Are written in HTML inside a string in Python. It will be
rendered automatically by Flask. Of course we cannot
expect to write our whole application like this.

As the application grows, we should prepare ourselves
to organize our app in a smart way. We can use
templates to separate the application logic from the
rendering part.

We will write our templates in separate files, stored in
a templates folder, inside the application package.

Templates Routes
W ' ™
[E index.html < ﬁ hello.py
) \ ,
7 ™
a __nit__.py <
o /

FRONTEND BACKEND

Create templates/index.html

<html>
<head>
<title>{{ title }} - Microblog</title>
</head>
<body>
<hl>Hello, {{ user.username }}!</hl>
</body>
</html>

You can see there is something weird with this html.
Those {{ ... }} enclosedthingsare notreally

familiar.

Those are variables, that we can pass through the
flask interface. They are now placeholders that will
be filled with dynamic content at runtime.

Website

Static pages:
Every user sees the
same information
each tima

M«

Web App

Dynamic pages:

Every user sees the
different inforrmation
clepending on their input

Crynamic
output

Get backto routes/hello.py and avoid that ugly
html text.

from flask import render template
from app import app

@app.route('/"')
@app.route('/index')
def index () :
user = {'username': 'Maura'}
return render template('index.html',
title="'Home',
user=user)

The operation that converts the template in actual
html is called rendering.

We use the function render template for this,
passing in the values for our placeholders. Note that
we only need to provide the name of the file, since
Flask automatically knows where to find the
templates folder.

CONDITIONAL STATEMENTS AND LOOPS
IN TEMPLATES

If we have to display a list of objects or display
something with a condition, it would be better to avoid
writing the htmlin the code.

We can add logic in our template with the following
blocks:

{% 1f greeting %}

<hl>{{ greeting }} {{user.username}}</hl>
{% else %}

<hl>Hello {{user.username}}</hl>
{% endif %}

Remember the endi £ statement. This may not seem
natural if you use Python

We can also use loops:

% for student in students %}
<div>
<p>{{ students.name }} - ID: {{ students.id }}</p>
</div>
% endfor %}

Let's add the linesin templates/index.html:

<!DOCTYPE html>
<html lang="en">
<head><title>{{ title }} - Blog</title></head>
<body>
{% 1f greeting %}
<hl>{{ greeting }} {{ user.username }}</hl>
{% else %}
<hl>Hello {{ user.username }}</hl>
{% endif %}
{$ for student in students %}
<div>
<p>{{ student.name }}: {{ student.id }}</p>
</div>
{$ endfor %}</body></html>

Of course, we should editour routes/hello.py as
well:

from flask import render template
from app import app

@Qapp.route('/"')
@app.route('/index')
def index () :

user = {'username': 'Maura'}
students = |
{'name': 'A', 'id': 1},
{"name': 'C', 'id': 111},

]

return render template('index.html', title='Home',
user=user, students=students,
greeting="Yo")

IF YOU DON'T LIKE TO WASTE TIME
LOOKING FOR AN INVISIBLE SYNTAX
ERROR

Remember the single { in the logic control and the
double { { in the variable getter.

TEMPLATE INHERITANCE

Would you imagine to create a website always
rewriting your html?

What if we want all of our pages to have a bar in the
top, and later we decide to change the color of the bar?

How much time would we waste replacing the code in
every single html file?

What if we forget some?

THAT'S WHY WE LIKE TO REUSE
OUR HTML.

We create a file called templates/base.html. This
file will be structured as:

HEADER
CONTENT
FOOTER

Where the content is the only part that changes for
each page. Let's first see how it works.

Here isthe html templated/base.html.

<!DOCTYPE html>
<html lang="en">
<head><title>{{ title }} - Blog</title></head>
<body>
{% 1f greeting %}
<hl>{{ greeting }} {{ user.username }}</hl>
{% else %}
<hl>Hello {{ user.username }}</hl>
{%$ endif %}
{% block content %} {% endblock %}

</body>
</html>

Hereis templates/index.html updated:

{%$ extends "base.html" %}

{% block content %}
% for student in students %}
<div>
<p>{{ student.name }} - ID: {{ student.id }}</p>
</div>
$ endfor %}
% endblock %}

We have introduced another Template element, the
{% block ... %$}{% endblock %}.Thiscontrol

statement defines:

e inthe base: the place where the derived template,
inheriting from base . html, will place itself.

e in the child: the content to fit in the block in the
base template. The extends statement will
establish the inheritance link between the two
templates.

Now it's time to add another route.

BUT YOU WILL DO IT YOURSELF

ADD ANOTHER ROUTE (1)

e addroutefile routes/mypage.py
= give a path to your page: /mypage
= remember to give a different name to the
function (!=1index ())
e addimportintheroute routes/ 1init .py

ADD ANOTHER ROUTE (2)

e create templates/mypage.html
= inheritfrom templates/base.html
= fill in the block

ADD ANOTHER ROUTE (3)

e visitthe page! --> localhost:5000/mypage
e bonus trick: add a link between the pages Back
to Homepage

localhost:5000/mypage

PART Ill: WEB FORMS

Ok, our application can now show us some content.

We want to add the possibility to accept input from the
user.

For that, we will use web forms.

WE ARE GOING TO IMPLEMENT THE
FOLLOWING LOGIC FOR LOGGING IN
USERS

FLASKWTF

Flask-wtf is a Flask extension, that means that we can
live without that but if we want to use this very useful
functionality we will have to install it.

pip install flask-wtf

https://wtforms.readthedocs.io/en/stable/crash_course.html

Before starting with forms, let's talk about
configuration. We will have to set several
configuration variables for our app. We could also just
define them in our runserver.py script, but they
can become hard to manage and change if our app
becomes big.

That's why developers create configuration files,
where all configuration variables can be collected and
loaded by our app without need to search for them in
the code.

\ Templates

Routes
) i A
{ E index.html J< ﬁ hello.py <
- {
P) _init__py N
ﬁ __init__.py }‘
P configuration.py} {ﬁ forms.py]
FRONTEND BACKEND

Create a configuration file, config. py, in the top-
level directory of our app:

| * FlaskTutorial

|———=* app

| - * routes

| === * templates

| -————* runserver.py

| -————-* config.py (NEW!)

import os

class Config(object) :
SECRET KEY = os.environ.get ('SECRET KEY') or "kkkkkkey!!"

As we need new configuration items, we can collect
them all here so that they are easy to find and change.

Let's go back to this "secret key" thing... Flask uses this
key as the cryptographic key for generating signatures
and token. This extension uses the key to protect our
app from an attack called "Cross-Site Request
Forgery" (CSRF - pronounced sea surf).

https://en.wikipedia.org/wiki/Cross-site_request_forgery

In a CSRF attack, the attacker's goal is
to cause an innocent victim to
unknowingly submit a maliciously
crafted web request to a website that
the victim has privileged access to.

There pattern os.environ.get ('SECRET KEY')
or 'my very secret key' canallowustouse
as first choice an environment variable (remember
them?), and if this is not defined we have a fallback
option as an hard-coded string.

We can add the configuration class to our flask
application justaddingonelineinour init .py
script:

from flask import Flask

from app.config import Config

app = Flask(name)
app.config.from object (Config)

from app.routes import *

Now that we have our configuration done, we can
finally head to the creation of a simple web form.

We can create a template form as a python class, just
for keeping things structured. Create a file forms . py

in the app directory.

from flask wtf import FlaskForm

from wtforms import (StringField, PasswordField,
BooleanField, SubmitField)

from wtforms.validators import DataRequired

class LoginForm(FlaskForm) :
username = StringField('Username',
validators=[DataRequired()])
password = PasswordField('Password',
validators=[DataRequired()])
remember me = BooleanField ('Remember Me')
submit = SubmitField('Login')

Note the particular classes used for each input space.

e StringField
e PasswordField

e RooleanfField
e SubmitField

Another important thing to noticeisthevalidators
field, that optionally lets us define some validation
method. The DataRequired validator only checks
that some data is present at the moment of the
submission.

Now we have to render this form as a webpage. The
fields defined in our class already know how to render
themselves, so we just have to include them in our
html.

Go ahead and createa templates/login.html

{% extends "base.html" %}
{%$ block content %}

<hl>Login</hl>

<form action="" method="post" novalidate>
{{ form.hidden tag() }}
<p>

{{ form.username.label } }

{{ form.username (size=32) }}
</p>

<p>
{{ form.password.label }}

{{ form.password(size=32) }}
</p>
<p>
{{ form.remember me() }} {{ form.remember me.label }}
</p>
<p>{{ form.submit () }}</p>
</form>
{% endblock %}

Remember we are extending the template
templates/base.html. This template expects to
receive a LoginForm object as argument, which we
reference inside the html as form.

Pay attention to this line:

<form action="" method="post" novalidate>

e The action tellsthe browser to which url
submit the data (we use this same url so the field
is empty).

e Themethod field is to specify the method of the
HTTP request

e The novalidate attribute is specified here
because the validation will be performed by the
web app, not by the browser.

Now, there is another weird line...

{{ form.hidden tag() 1}}

This line is used for generating a hidden token that is
used to protect the form against CRSF attacks. Flask
will handle everything nicely as long as:

e thereis ahiddentaginthe form
e thereis a specified secret key in the config

Now we have to link the form in our application.
Create routes/login.py.

from flask import render template
from app import app
from app.forms import LoginForm

@app.route('/login')
def login(() :
instantiate a login form
form = LoginForm ()
return render template('login.html',
title='Login',
form=form)

We can include the login button in our navigation bar.
Edit templates/base.html:

<div>
My Page:
Home
Login
</div>

Comment the user part for now ...

Go and try your login form. Of course you can't expect
that everything runs smoothly :D

ACCEPTING DATA FROM FORMS

METHOD NOT
ALLOWED ...

This is Flask telling us that we are trying to send
information through a POST method, but we forgot to
defineitin the code!

HTTP METHODS

GET retrieve information

HEAD retrieve resource headers
POST submit data to the server.
PUT save an object at the location

DELETE delete the object at the location

More info here

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

from flask import render template, flash, redirect

@app.route('/login', methods=['GET', 'POST']) # <<<<<<<K<L<L
def login() :
form = LoginForm ()

if form.validate on submit():
todo: we will handle this later
return redirect ('/index")
return render template('login.html',
title='Login',
form=form)

Now we can accept user data and validate them. First,
let's have a look at the line:

The methods argument tells Flask that we want to use
both POST and GET methods in this same url.

QUICK RECAP

GET: return information to the client (browser)
POST: client (browser) sends information to the server

We can always send information with GET, but that is
probably a bad idea...

Do you really want to store in the server this line?

"GET /login HTTP/1.1" 200 - login?user=myUser&pass=MyPassword

This line accepts the input and validates it. This
method returns True only if the browser sends a

POST request AND if the validation methods in all the
fields run smoothly.

if form.validate on submit () :

If the validation fails, it will return False, so we will
have to handle that later.

You see now that if we try to validate the form without
filling the required fields, the actual behavior will be
that the server re-display the form.

Of course we want to show some information to the
user, so that she/he can understand what happened
with the login.

The form validators already have some pre-defined
error message, but the are not actually rendered in our
form.

{% extends "base.html" %}

{% block content %}

<p>
{{ form.username.label } }

{{ form.username (size=32) }}

{%$ for error in form.username.errors %}
[{{ error }}]
{% endfor %}

</p>

<p>
{{ form.password.label } }

{{ form.password(size=32) }}

{% for error in form.password.errors %}
[{{ error }}]1
{% endfor %}

</p>

{% endblock %}

The only change here is in the for loops that display all
error messages added by the validators. The error
messages in the form can be get through form.

<field_name>.errors.

We are using a form because the errors are a list. This
Is because fields can have more than one validator.

Let's try to generate the errors!

http://127.0.0.1:5000/login

http://127.0.0.1:5000/login

JUST SOME SMALL IMPROVEMENT ...

GENERATING LINKS INSIDE THE
APPLICATION

Now we have used the line;

return redirect ('/index')

Which is for redirecting the browser to the resource
/index.

Many times you may want to change your links.

If you decide to do some refactoring, you will have to
replace all links in your application.

One solution is to use a function that creates URLs
inside Flask, with its internal mapping to view
functions.

url for('index')

will generate an URL for the view function index. The
argument is the endpoint name, which is the name of
the view function.

Another important aspect of this separation of URL
and view function is the generation of dynamic urls.

Let's go and fix all the urls that we placed in our app:

e app/templates/base.html
e app/routes.py

Notice that in the html file we will have to use the
double "{"

<div>
My Page:
Home
Login
</div>

PART IV: DATABASES

We want our server to remember the registered users.
In order to do so we have to connect to a database.

For this application we will use a simple non relational
database, called Mongo.

Mongo elements:

Document Oriented Storage

Server
Database
Collection

Document

{key : value}

pip install flask mongoengine flask login

Templates

(E index.html

I

Routes
(" ™~
Ps- =) hello.py <
9 ./)
4 ™

__init__.py
/<—‘

FRONTEND

) init__py

- Conﬁguration.py] (P forms.py }

BACKEND

J | data

Now we need to add our database settings to our
config file:

database configuration
MONGODB HOST = "localhost"
MONGODB PORT = 27017

MONGODB USERNAME = "username"
MONGODB CONNECT = True
MONGODB DB = "my app db"

The complete db connection string is called db URI,

and itis needed by the library for connecting to the
right source.

It contains (at least):

e the driver name mongodb

e the host (server on which the db is hosted)
= in this case our localhost

e the port where the dbis accessible

from flask import Flask
from flask mongoengine import MongoEngine
from app.config import Config

app = Flask(name)
app.config.from object (Config)
db = MongoEngine (app)

from app.routes import *

Mongoengine will connect our application to the
specified database and expose the db attribute in the
app. We can use it directly in views.

https://mongoengine-odm.readthedocs.io/tutorial.html

ORM = OBJECT-RELATIONAL MAPPERS

We have to create a model for storing our data in a

For exam
and ac

structured way.

ole, all users will have a username, password
ditional information such as the email for

PaSSWOIC

recovery, phone number for two factor auth
etc.

Let's create a filemodels.pyin our source root,
where runserver.pyis located.

from app import db

class User (db.Document) :
meta = {'collection': 'users'}
email = db.StringField (max length=30)
password = db.StringField ()

You probably noticed that the fields are the same that
we have in our form. This will of course come in handy
when we have to use the information in the form for
logging in the user.

Ok, but we don't have users yet. We need to create a
Sign In form.

EXERCISE: CREATE THE SIGN-IN FORM.
(HINT: START FROM THE LOGIN FORM)

e forms.py
routes/signin.py

button in the navbar (base.html)

[
e templates/signin.html
[
e routes/ 1init .py

Other improvements:

Let's add the email field to the registration form. The
email may be used for password recovery or to send

nice emails with updates (we won't cover them in this
course).

IMPORTANT: ALWAYS ADD THE
(ANNOYING) EMAIL VALIDATION
PROCESS IN THE WEBSITES.

It will prevent users to insert other people's mails in
the field (and fill their inbox with unwanted spam).

from wtforms.fields.html5 import EmailField
from wtforms.validators import Email

wtforms email field and validator
email = EmailField('Email address',

validators=[DataRequired (), Email()])

It's time to try out the new path we added. (remember
to try out also the validation of the email field!)

STORING THE USER DATA IN MONGO DB

Now we have to implement the following logic for
signing-in:

e valid email + valid username + not in database:
user info should be stored.

e valid email already registered: error (email
already in use).

e valid username already registered: error
(username already in use).

Inside routes/signin.py:

if form.validate on submit () :
user = User (email=form.email.data,
username=form.username.data,
password=form.password.data)
user.save ()

For now we are just adding a user, of course we cannot
store the password as it is.

Let's verify that the user is correctly added. Connect to
a mongodb shell using a terminal:

mongo

use my app db
coll = db.users
coll.find ()

Now let's add the check for username and email. In

routes/signin.pyv:

from flask import abort

if form.validate on submit () :
same emall = User.objects(email=form.email.data)
if len(same email) > O:
abort (403, "Forbidden. Email already 1in use.")
else:
user = User (email=form.email.data,
username=form.username.data,
password=form.password.data)
user.save ()

EXERCISE: ADD THE SAME CHECK FOR
"USERNAME ALREADY IN USE".

WHAT COULD GO WRONG?

Registration form

Login

Password

Confirm password

Sofry, this password is already used by another
account ("mario”). Please choose other pasword.

Redgister |

Credits: www.codewell.com

https://www.codedwell.com/post/64/old-school-web-security-fail

We must also hide the password when we storeit. It is
not a good strategy to store it directly as itis inserted.

HASHING PASSWORDS

Password Hash Salting

Hashing
User Password Salt Added Algorithm Hashed Password + Salt

App]e —_— ApplevrtZd — q X — £53107b3aT9cc2f718b9526aa6bd40c34
yrtZd

N / '
\ Password Store

£53107h3al9cc2f18b9526aabbd40c34

yrtZd

Credits: medium article

https://medium.com/developer-diary/net-core-3-0-preview-4-web-api-authentication-from-scratch-part-2-password-hashing-7e43b64cbe25

HASHING PASSWORDS

from werkzeug.security import generate password hash
hashpass = generate password hash (form.password.data,
method="'sha?256")
user = User (email=form.email.data,
username=form.username.data,
password=hashpass)

LET'S TEST THE PASSWORD HASHING

1) signin a new account.
2) enter mongo shell and see the registered users.

3) you should see a user with the hashed password.

Now we can finally add the logic for logging in a
registered user. We will edit routes/login.py

from werkzeug.security import check password hash
from flask login import login user

if form.validate on submit () :
user = User.objects (username=form.username.data)
if len(user) > 1:
if check password hash (user.password,
form.password.data) :
login user (user)
return redirect (url for('index'))
else:
abort (404, "User not found. Please register.")

The method check password hash will match the

hash of the password submitted by the user with the
password stored at registration.

The method 1ogin user will set the user logged in.
Let's add the 1ogin user method also after a user
registers.

Inordertouse login user we haveto provide a
method for flask to handle the user logins.

More information here.

https://flask-login.readthedocs.io/en/latest/#how-it-works

We add the followingto init .py:

from flask login import LoginManager
login manager = LoginManager (app)

Does not work yet. This is because the User model
that we defined does not have the attributes required

for checking the login.

We have to add to the inheritances of User the mixin
class UserMixin.

from flask login import UserMixin
class User (db.Document, UserMixin) :

https://www.ianlewis.org/en/mixins-and-python

Another small change tomodels.py and we are
good to go. Here we provide a method for the Login
Manager to load the object that contains the user.

from app import login manager

def load user (user id):
return User.objects (pk=user id) .first ()

Now let's remove all trash we have in the database. ...

mongo
use my app db
db.dropDatabase ()

Ok now we can login. In the next sections we will
create a view that is only accessible to logged in users
and a logout button.

LOGIN REQUIRED

Edit routes/mypage.py and add the following
decorator:

from flask login import login required

def mypage () :

Now let's also use the user information.

from flask login import login required, current user
def mypage () :
user = current user
return render template('mypage.html',
title="Home',
user=user,
greeting="Yo")

USER LOGOUT

Let's create aview routes/logout.py forlogging
out the user:

from flask import url for
from flask login import login required, logout user
from app import app, redirect
@app.route ("/logout")
@login required
def logout () :
logout user()
return redirect (url for('index'))

We don't need to create an html file related to the
logout, since we can directly render the index page

again.

But we need to change base.html and add the

button in our nav bar.

href="{{ url for('index') }}">Home

5 1f not current user.is authenticated %}

Login
Sign In

% endif %}
5 1f current user.is authenticated %}

Logout

% endif %}

ERROR HANDLING

Try to log out and visit
http://localhost:5000/does-not-exist

http://localhost:5000/does-not-exist

We want to add a custom template to our error pages.
For doing so, create routes/errors.py

from flask import render template

from app import app

@app.errorhandler (404)

def page not found(e):
note that we set the 404 status explicitly
return render template('404.html'), 404

Now create templates/404.html

{% extends "base.html" %}
{% block content %}

<hl>Page Not Found</hl>

<p>What you were looking for is just not there.

<p>Go somewhere else.
{%$ endblock %}

Finally, add theimportin routes/ 1init .py.

Navigate again to

http://localhost:5000/does-not-exist

http://localhost:5000/does-not-exist

EXERCISE: CREATE ABLOG

e create apage /blog

e redirect to that page after login and sign in

e show comments stored in mongo

e create /comment path (login required)

e create a button for sending new comments

e logged in users can post comment and they will
be displayed in the blog

TO-REMEMBER (DO NOT ERASE AFTER EXAM) CHECKLIST:

e Web server

e Frontend vs. Backend

e API

e Deployment and Localhost
e URland URL

e Requests

e Static vs. Dynamic website
e Rendering and Templates
e Connection to databases

THE END

