

Reliable Evaluation and Benchmarking of Machine Learning Models for Real-World Deployments

Maura Pintor

Assistant Professor @ Università di Cagliari maura.pintor@unica.it

Machine Learning for Cybersecurity Workshop (MLCS) Porto, September 15th, 2025

Attacks Against AI are Pervasive!

Sharif et al., Accessorize to a crime: Real and stealthy attacks on state-ofthe-art face recognition, ACM CCS 2016

Eykholt et al., Robust physical-world attacks on deep learning visual classification, CVPR 2018

"without the dataset the article is useless"

"okay google browse to evil dot com"

Carlini and Wagner, *Audio adversarial examples: Targeted attacks on speech-to-text*, DLS 2018 https://nicholas.carlini.com/code/audio-adversarial-examples/

A. Zou et al., *Universal and transferable adversarial attacks* on aligned language models, 2023 https://llm-attacks.org

Why ML Can Be Fooled

- ML captures statistical correlations between the input data and the desired outputs
- ML models don't achieve true comprehension of the semantics
- They may fail in unexpected ways when patterns change
- Small, carefully designed (adversarial) changes can mislead it

Wild Patterns: Attacks against Machine Learning

Attacker's Goal			
	Misclassifications that do not compromise normal system operation	Misclassifications that compromise normal system operation	Querying strategies that reveal confidential information on the learning model or its users
Attacker's Capability	Integrity	Availability	Privacy / Confidentiality
Test data	Evasion / adversarial examples	Sponge Attacks	Model extraction / stealing Model inversion Membership inference
Training data	Backdoor/Targeted poisoning (to allow subsequent intrusions)	Indiscriminate (DoS) poisoning Sponge Poisoning	Training data poisoning to facilitate privacy leaks at test time

Attacker's Knowledge: white-box / black-box (query/transfer) attacks (*transferability* with surrogate models)

Evasion Attacks a.k.a. Adversarial Examples

Biggio et al. (2013) and Szegedy et al. (2014) independently developed gradient-based attacks against DNNs

An image with barely altered pixels (statistical changes) ...

... that a human still sees as a schoolbus (semantics)...

... but an ML model sees as an ostrich

 $\min L(D; \mathbf{w})$

Exhaustive search → not possible for modern deep learning models

Empirical evaluation → attack = optimization problem + solving algorithm

Optimize model's confidence on bad decision keeping perturbation small and respecting feature space constraints

Projected Gradient Descent

Algorithm 1 Projected Gradient Descent Attack

Require: x, the input sample; t, a variable denoting whether the attack is targeted (t = +1) or untargeted (t = -1); y, the target (true) class label if the attack is targeted (untargeted); α the step size for the update; K, the total number of iterations.

Ensure: The optimized adversarial example x^* .

9: return $x^* \leftarrow x_0 + \delta^*$

```
1: \boldsymbol{x}_0 \leftarrow \boldsymbol{x}, \, \epsilon_0 = 0, \, \boldsymbol{\delta}_0 \leftarrow \boldsymbol{0}, \, \boldsymbol{\delta}^\star \leftarrow \infty
2: \boldsymbol{for} \, k = 1, \dots, K \, \boldsymbol{do}
3: \boldsymbol{g} \leftarrow t \cdot \nabla_{\boldsymbol{\delta}} L(\boldsymbol{x}_{k-1} + \boldsymbol{\delta}, y, \boldsymbol{\theta}) // loss gradient
4: \boldsymbol{\delta}_k \leftarrow \boldsymbol{\delta}_{k-1} + \alpha \cdot \boldsymbol{g} / \|\boldsymbol{g}\|_2 // gradient-scaling
5: \boldsymbol{\delta}_k \leftarrow \Pi_{\epsilon}(\boldsymbol{x}_0 + \boldsymbol{\delta}_k) - \boldsymbol{x}_0
6: \boldsymbol{\delta}_k \leftarrow \operatorname{clip}(\boldsymbol{x}_0 + \boldsymbol{\delta}_k) - \boldsymbol{x}_0
7: \boldsymbol{x}_k \leftarrow \boldsymbol{x}_0 + \boldsymbol{\delta}_k
8: end for
```


Adversarial Robustness

Evaluating adversarial robustness amounts to finding adversarial examples with a given perturbation budget (varying ϵ)

Robust Accuracy = accuracy under worst-case perturbation (fixed perturbation size)

Perturbation models

Parameters of gradient descent

What influences the progress (and results) of the optimization?

- number of steps
 - if we don't take enough steps we can stop too early and far from the optimum

- step size
 - if the step size is too small, we need many steps to reach convergence
 - if the step size is too big, we might overshoot the optimum
 - the decay of the step size is also important

- function that we are optimizing
 - there might be local minima and our optimization can get stuck in them

https://fa.bianp.net/teaching/2018/eecs227at/gradient_descent.html

Defending Against Evasion Attacks

- Robust training (a.k.a. Adversarial training)

$$\min_{\mathbf{w}} \max_{||\boldsymbol{\delta}_i||_{\infty} \leq \epsilon} \sum_{i} \ell(y_i, f_{\mathbf{w}}(\mathbf{x}_i + \boldsymbol{\delta}_i))$$

- Detectors

Pros: works!
Cons: high cost

Pros: less expensive than AT! Cons: can be bypassed!

- Ineffective defenses

Debugging and Improving AI/ML Security Testing

The Rise of Adversarial Defenses

Papernoteral. Mengeral Dicknane at Incoding Wilk Magdet defense Cost Themoneter Encoding

Rolled a 2019 Panes and White the All Chairs of the Resident Country of the Antice of the Country of the

Security Evaluation of ML is Hard...

Theoretical guarantees of security only exist if the **data perturbation model** is somewhat mathematically tractable, and they do not scale well for large ML models

Empirical security testing and **adversarial defenses** need **what-if analysis** to simulate attack scenarios with *data augmentation* mechanisms. Data can be:

- 1. Artificially generated, if a perturbation model can be mathematically/algorithmically defined
- Collected in the wild, e.g., to test a perception model in different operating conditions

Security Evaluation of ML is Hard...

```
from awesome_ml_security_library import pgd

x_adv = pgd(model, x, y)
success = model.predict(x_adv) != y
```


Ideal World vs Real World in Evaluating Adversarial Robustness

Certified robustness: Ensuring that no adversarial example exists within the given budget

Only doable in simple/tractable cases...

Empirical robustness: run empirical attacks and count their failures

But... if the attack fails, we cannot conclude that no adversarial example exists...

Example: Gradient Obfuscation

When GD works

When GD does not work

Zero gradients: impossible to find adversarial direction

Example: Gradient Obfuscation

When GD does not work

Change loss function

Use smooth approximation

Attack Failures, Indicators, and Mitigations

Experiments

AttackBench: Benchmarking Gradient-based Attacks

Too many new attack papers... each claiming to outperform all the others...

Tested more than 100 attack implementations, ~1,000 different configurations

Metrics: optimality/effectiveness and efficiency/complexity

https://attackbench.github.io

Extending AI/ML Security Testing to Cybersecurity

Practical Performance of ML-based Malware Detectors

- Let's assume we built a model robust to adversarial examples
 - but it does not seem to be much more robust over time...
 - new types of malware, different distributions unseen in training

Open research problem

How to keep your model updated (and robust)?

Current solution: frequent model updates

requires time and (also \$\$\$) resources

But there are other *hidden* costs...

Inconsistencies (Regression) in Model Updates

Even if the new model is better on average, it makes new errors on specific samples

ML Model Updates

Continual Learning

Using only the newest data plus, eventually, a replay buffer filled with a fraction of the old data

Positive Congruent Training

Regularization strategy for reducing negative flips

$$f^{ ext{new}} \in rg \min_{f \in \mathcal{F}} \sum_{i=1}^{n} L(y_i, f(\boldsymbol{x}_i)) + \lambda \cdot L_{FD}(f(\boldsymbol{x}_i), f^{ ext{old}}(\boldsymbol{x}_i))$$

How About Robustness?

Positive-Congruent Adversarial Training (PCAT)

- includes the adversarial training objective to reduce robustness negative flips
- further enhanced versions in the paper

$$\min_{f \in \mathcal{F}} \sum_{i=1}^n \max_{oldsymbol{x}_i' \in \mathcal{B}_i} L(y_i, f(oldsymbol{x}_i')) + \lambda \cdot L_{FD}(f(oldsymbol{x}_i'), f^{ ext{old}}(oldsymbol{x}_i'))$$

Robust Android Malware Detection Competition

- Competition on Robust Android Malware Detection
 - Presented at SaTML '25 https://ramd-competition.github.io

- The participants had to develop solutions that are:
 - robust (possibly with guarantees) to adversarial Android malware manipulations
 - robust to data distribution changes over time
- Solutions will be released open source
 - Goal: to foster *fully* reproducible robustness evaluations of ML-based Android malware detectors

Concluding Remarks

Let's fix ML Security

Problem #1: slow, hard-to-configure, limited attacks

Fix #1: improve available attacks

Problem #2: lack of debugging tools for ML Security
Fix #2: develop tests and track metrics on the attacks

·

Problem #3: Keep in mind the real world Fix #3: create strong and realizable attacks Fix #3(bis): benchmark in realistic scenarios

With LLM/LVM and GenAl the attack surface has grown even more Let's try not to make the same mistakes once again

Our Vision: From MLOps to ML*Sec*Ops

- Goal: to empower MLOps with Al/ML Security, developing three main pillars
 - Al/ML Protection: to build robust Al/ML and data sanitization procedures
 - Al/ML Security Testing: to ensure proper testing and debugging of Al/ML models
 - Al/ML Security Monitoring: to monitor Al/ML models in production (e.g., when deploying MLaaS) to timely detect ongoing attacks and block them

SecML-Torch

A Library for Robustness Evaluation of Deep Learning Models

- PyTorch-powered
- Multiple attacks implemented (and wrapped from other adv-ML libraries)
- (known bugs fixed)
- Customizable with easy-to-use OOP interfaces
- Debugging interface via TensorBoard

https://secml-torch.readthedocs.io/en/latest/

Thanks!

Open Course on MLSec https://github.com/unica-mlsec/mlsec

Machine Learning Security Seminars https://www.youtube.com/c/MLSec

Software Tools https://github.com/pralab

Maura Pintor maura.pintor@unica.it

Special thanks to Battista Biggio, Luca Demetrio, Angelo Sotgiu, Daniele Angioni, and Antonio Emanuele Cinà for sharing with me some of the material used in these slides.