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Attacks against AI are Pervasive!

“without the dataset the article is useless”

“okay google browse to evil dot com”

Sharif et al., Accessorize to a crime: Real and stealthy
attacks on state-of-the-art face recognition, ACM CCS
2016

Eykholt et al., Robust physical-world attacks on deep learning 
visual classification, CVPR 2018

Carlini and Wagner, Audio adversarial examples: Targeted attacks on speech-to-text, DLS 2018 
https://nicholas.carlini.com/code/audio_adversarial_examples/

- Demetrio, Biggio, Roli et al., Adversarial EXEmples: ..., ACM TOPS 2021
- Demetrio, Biggio, Roli et al., Functionality-preserving black-box optimization of adversarial

windows malware, IEEE TIFS 2021
- Demontis, Biggio, Roli et al., Yes, Machine Learning Can Be More Secure!..., IEEE TDSC 2019 
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Adversarial Examples (AdvX)
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Adversarial Examples (AdvX)
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Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014
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Adversarial Examples (AdvX)
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How to craft AdvXs
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Exhaustive search à not possible for modern deep learning models
Empirical evaluation à attack = optimization problem + solving algorithm

Optimize model’s confidence on bad decision

keeping perturbation small

and respecting feature space constraints
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Optimize model’s confidence on bad decision

keeping perturbation small

and respecting feature space constraints

How to craft AdvXs
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Exhaustive search à not possible for modern deep learning models
Empirical evaluation à attack = optimization problem + solving algorithm

Biggio et al., Evasion Attacks Against Machine Learning at Test Time,  ECML PKDD 2013
Szegedy et al., Intriguing Properties of Neural Networks, ICLR 2014
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How to craft AdvXs
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Optimizes confidence

s.t. distance constraint

and feature space constraints

Find closest advX

s.t. misclassification constraint

and feature space constraints

Projected 
Gradient

Boundary

+ Fast evaluation

- Punctual evaluation (fixed ϵ)

+ Full picture of robustness (boundary)

- Require many iterations

- Difficul to configure properly

Question: How to achieve a fast, reliable, and full evaluation?

https://twitter.com/maurapintor
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How to craft AdvXs
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Pintor et al., Fast Minimum-norm Adversarial Attacks 
through Adaptive Norm Constraints, NeurIPS 2021.
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Long runtime

Sensitive to hyperparameters

Limited threat model

Bug #1 Slow, hard-to-configure, limited attacks
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• Carlini-Wagner attack (CW)
– Requires many steps to converge

• Brendel&Bethge attack (BB)
– Needs initialization
– Suffers from poor initialization
– Complicated steps

• Fast Adaptive Boundary (FAB)
– Complicated steps
– Only untargeted version

• Decoupling Direction & Norm (DDN)
– Specific to L2 norm

https://twitter.com/maurapintor
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Fix #1: improve current attacks

11

# of queries

Slow convergence

Fast convergence

FMN

Fast convergence to good local optima

Works in different norms (ℓ!, ℓ", ℓ#, ℓ∞)

Easy tuning /robust to hyperparameter choice

N
ot adversarial

Smaller norm

Bigger norm

Pintor et al., Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints, NeurIPS 2021.

Goal: find smaller adversarial perturbation with fewer queries to the model

https://twitter.com/maurapintor
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Fast Minimum-norm Adversarial Attacks

Pintor et al., Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints, NeurIPS 2021.
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MNIST 
challenge

CIFAR 
challenge

Fast Minimum-norm Adversarial Attacks

Pintor et al., Fast Minimum-norm Adversarial Attacks through Adaptive Norm Constraints, NeurIPS 2021.
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Let’s fix ML Security
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Bug #1: slow, hard-to-configure, limited attacks
Fix #1: improve available attacks
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Defending against AdvXs

min
𝒘

max
||𝜹%||&'(

∑) ℓ 𝑦) , 𝑓𝒘 𝒙) + 𝜹)
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● Robust training (a.k.a. Adversarial training)

● Detectors

● Ineffective defenses g(𝑥)

𝑥’𝑥

Obfuscated gradients do not
allow the correct execution of 
gradient-based attacks...

https://twitter.com/maurapintor
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The Rise of Adversarial Defenses
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The Rise Fall of Adversarial Defenses
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Why Is This Happening? 

Root cause: Formal vs Empirical Evaluations

Formal: no adversarial example in the searched space

Reality: we can only “falsify” the robustness claims by finding adversarial examples

Similar to finding bugs in software

What can we say if we did not find adversarial examples?

But no debugging tools for ML robustness

What is the coverage of our tests?

18
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Bug #2: Lack of debugging tools 
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Fix #2: check what your attack is doing

Profiling attacks

Check your loss

Sanity checks for attacks (Carlini et al. 2019 Evaluating Adversarial Robustness, arXiv)

Goal: to make security evaluations more trustworthy

Pintor et al., Indicators of Attack Failure. NeurIPS 2022
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Example: Gradient Obfuscation

Smooth function: linear 
approximation works

Non-smooth function: 
linear approximation leads 
to local minima

Zero gradients: impossible to 
find adversarial direction

When GD works When GD does not work

Check gradient
norm

Check variability
of loss landscape

Pintor et al., Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples, NeurIPS 2022
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Change loss
function

Use smooth
approximation

Non-smooth function: 
linear approximation leads 
to local minima

Zero gradients: impossible to 
find adversarial direction

When GD does not work

Check gradient
norm

Check variability
of loss landscape

Example: Gradient Obfuscation

Pintor et al., Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples, NeurIPS 2022
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Attack Optimization

Fa
ilu
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s
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Implementation 
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Attack

F4
Non-adaptive 

Attack

F5
Unreachable 

Misclassification

F6* *

Attack Failures, Indicators, and Mitigations

Pintor et al., Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples, NeurIPS 2022
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Attack Optimization
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Attack Failures, Indicators, and Mitigations
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Attack Optimization
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(Adaptive)

Unstable 
Predictions

Tune Step Size
and Iterations
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Loss/Model-specific fixes to ensure gradients are smooth Attack-specific fixes to ensure attack optimization runs correctly

* * * * * *

* *

* *

Attack Failures, Indicators, and Mitigations
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Attack Failures, Indicators, and Mitigations
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Identifying and Fixing Failures

27

The evaluations that we identified as faulty trigger our indicators
+ additional results in the paper!

Table 1: Indicator values (cols.) computed on the selected models (rows) using different attacks. The
robust accuracy (RA) is reported in the last column (best values in bold). The symbol "Tr" denotes
a transfer attack. The X represents the detection of a specific failure. We report in parentheses the
fraction of samples for which indicators I2, I3, I4, and I6 are active.

Model Attack I1 I2 I3 I4 I5 I6 RA

DIST
Original X X(10/10) 0.95
Patched 0.01

k-WTA
Original X(10/10) X(23%) X(11%) X(4/10) 0.67
Patched X(6%) X(2/10) 0.09

(APGDDLR). Robustness is computed with the robust accuracy (RA) metric, quantified as the ratio
of samples classified correctly within a given perturbation bound ✏. For I1, I2, and I6 we set N = 10,
and for I4 we set k = 10. For I2, we set the number of sampled neighboors s = 100, and the radius
of the `2 ball r = 10�3, to match the step size ↵ of the evaluations. The thresholds ⌧ of I2 and µ
of I4 are set to 10% and 1% respectively (details about their calibration in A.2). All the robustness
evaluations are performed on 100 samples from the test dataset of the considered model, and for
each attack we evaluate the robust accuracy with ✏ = 8/255 for CIFAR models, and ✏ = 0.5 for the
MNIST ones. The step size ↵ is set to match the original evaluations (as detailed in A.1).

Identifying and Fixing Attack Failures. We now delve into the description of the considered
evaluations, which failures we detect and how we mitigate them, reporting the results in Table 1.

Correct Evaluations (ST, ADV-T). We first evaluate the robustness analysis of the Wide-ResNet and
the adversarially-trained model, by applying PGD with CE loss, with n = 100 (number of steps) and
↵ = 0.03 (step size). Since no gradient obfuscation techniques have been used, the loss landscape
indicators do not trigger. Also, since the attacks smoothly converge, these evaluations do not trigger
any attack optimization indicator. Their robust accuracy is, respectively, 0% and 48%.

Defensive Distillation (DIST). Papernot et al. [29] use distillation to train a classifier to saturate the
last layer of the network, making the computations of gradients numerically unstable and impossible
to calculate, triggering the I1 indicator, but also I6 indicator as the optimizer can not explore the space.
To patch this evaluation, we apply M1 to overcome the numerical instability caused by DIST, forcing
the attack to leverage the logits of the model instead of computing the softmax. Such a fix reduces the
robust accuracy from 95% to 1%. In contrast, APGDDLR manages to decrease the robust accuracy
to 0%, as it avoids the saturation issue by considering only the logits of the model, while APGDCE

triggers the same issues of the original evaluation.

k-Winners Take All (k-WTA). Xiao et al. [43] develop a classifier with a very noisy loss landscape,
that destroys the meaningfulness of the directions of computed gradients. The original evaluation
triggers I2, since the loss landscape is characterized by frequent fluctuations, but also I3, as the applied
PGD [25] returns the last point of the attack discarding adversarial examples found within the path.
Moreover, due to the noise, the attack is not always reaching convergence, as signaled by I4, also
performing little exploration of the space, as flagged by I6. Hence, we apply M2, performing EoT on
the PGD loss, sampling 2000 points from a Normal distribution N (0,�2I), with � = 8/255. We fix
the implementation with M3, and increase the iterations with M4, thus reducing the robust accuracy
from 67% to 9%. However, our evaluation still triggers I4 and I6, implying that for some points the
result can be improved further by increasing the number of steps or the smoothing parameter �. Both
APGDCE and APGDDLR trigger I2, since they are not applying EoT, and they partially activate I6,
similarly to the original evaluation. Interestingly, APGDDLR converges better than APGDCE, as the
latter triggers I4. Both attacks decrease the robust accuracy to 35% and 28%, a worst estimate than the
one computed with the patched attack that directly handles the presence of the gradient obfuscation.

Input Transformations (IT). Guo et al. [22] apply random affine input transformations to input images,
producing a noisy loss landscape that varies at each prediction, thus its original robustness evaluation
I2, I3, and I4 indicators, for the same reasons of k-WTA. Again, we apply M2, M3 and M4, using EoT
with � = 200 and � = 8/255, decreasing the robust accuracy from 32% to 0%. Still, for some points
(even if adversarial) the objective could still be improved, as I4 is active for them. Both APGDCE and

7
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Detecting Unreliable Evaluations

28Pintor et al., Indicators of Attack Failure: Debugging and Improving Optimization of Adversarial Examples, NeurIPS 2022

https://robustbench.github.io

We evaluated 6 defenses recently 
published on top-tier venues, available 
through RobustBench

They have been tested with AutoAttack
a SOTA parameter-free attack

We show that these evaluations are 
unreliable

https://twitter.com/maurapintor
https://robustbench.github.io/
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Let’s fix ML Security
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Bug #1: slow, hard-to-configure, limited attacks
Fix #1: improve available attacks

Bug #2: lack of debugging tools for ML Security
Fix #2: develop tests and track metrics on the attacks
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Bug # 3: Meet the Real World

30

Adversarial perturbations are usually crafted in the ideal situation

Challenges:
- the model might be unknown / not accessible
- the perturbation must respect the rules of the real world

How to evaluate robustness in the physical world?

https://twitter.com/maurapintor
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Fix # 3: Beyond white-box evaluations

31
Papernot et al., Practical Black-Box Attacks against Machine Learning, ASIACCS 2017
Demontis et al., Why Do Adversarial Attacks Transfer? USENIX Security 2019

target model
surrogate model

is the attack effective?

Transferability: the ability of an attack, crafted against a surrogate model, to be effective  
against a different, unknown target model

We propose three metrics that clarify the underlying factors behind transferability and allow 
highlighting interesting connections with model complexity

Key insights: 
- gradient alignment and smoothness of surrogate improves transferability

https://twitter.com/maurapintor


http://pralab.diee.unica.it @maurapintor

Enhancing Transferability and Creating Physical Attacks

32Pintor et al., Imagenet-Patch. Pattern Recognition, 2022

Adversarial 
patches

Training 
images

Perturbed 
samples

Loss computationGradient-based update 

Models

Random Affine Transforms

Adversarial 
patch 𝞭

⊕
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Beyond White-box Evaluations: Creating Real-world Attacks

33Pintor et al., Imagenet-Patch. Pattern Recognition, 2022

From the digital world ...

... to the physical world

https://twitter.com/maurapintor
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Adversarial EXEmples: Practical Attacks on Machine Learning for Windows Malware Detection

Demetrio, Biggio, et al., Adversarial EXEmples, ACM TOPS 2021
Demetrio, Biggio, et al., Functionality-preserving ..., IEEE TIFS 2021 
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Let’s fix ML Security

35

Bug #1: slow, hard-to-configure, limited attacks
Fix #1: improve available attacks

Bug #3: Keep in mind the real world
Fix #3: create strong and realizable attacks

Bug #2: lack of debugging tools for ML Security
Fix #2: develop tests and track metrics on the attacks
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Provocations

Do we want to spend the next 10 years like this?

Will this problem even be relevant in 10 years?

36
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Machine Learning is deployed in the real world

37

Induced hallucinations
Research clearly shows that it is possible to 
target machine learning models with 
practical attacks that spoil its 
performances

Many threats
Test-time perturbations, dataset poisoning, 
privacy leaks, and many many others

https://twitter.com/maurapintor
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Use-Inspired Basic Research Questions
Looking at the Pasteur’s Quadrant

If evidence of optimized attacks against AI/ML remains unclear, 
what will be the future of MLSec as a research field?

Can we use MLSec to help solve some of today’s industrial 
challenges? 

- To improve robustness/accuracy over time, requiring less 
frequent retraining

- To improve maintainability and interpretability of deployed 
models (update procedures)

- To learn reliably from noisy/incomplete labeled datasets

Will we be able to build more reliable and practical ML models 
using MLSec / AdvML?
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Thanks!

@maurapintor

maura.pintor@unica.it

Special thanks to Battista Biggio, Antonio Emanuele Cinà, and Luca Demetrio for sharing with me some of the material used in 
these slides.
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