
ISDe course
Web development

Maura Pintor
maura.pintor@unica.it

1

mailto:maura.pintor@unica.it

What this lesson covers:

designing APIs
inspecting code written by others
implementing a few basic APIs
creating a container
creating an architecture with isolated components
scaling

2

Let's imagine a scenario:

We are a team of web developers that
should build a demo of the product

"image classifier", which is provided by
another team of our company.

3

The code for the classifier is already written as it is a
product of our company, we are going to use it as a

black box.

4

We are not going to start from scratch.

The team has a repository that contains already some
code.

5

But first let's see some fundamentals of web
development

6

Part 0 : Basics
Web servers, image classification, and

containers

7

Web servers

8

Web server for the user

More info .here

Example of webserver

9

https://en.wikipedia.org/wiki/Web_server
https://en.wikipedia.org/wiki/

Web server for the developer

More info .here

10

https://en.wikipedia.org/wiki/Front_and_back_ends

API

More info about .

Open video

APIs

11

https://www.youtube.com/embed/s7wmiS2mSXY
https://en.wikipedia.org/wiki/Application_programming_interface

HTTP

More info on .HTTP Protocol

12

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

The language of web servers

13

14

Localhost

More info .here
15

https://en.wikipedia.org/wiki/Localhost

Deployment

deploy resources = make them ready to be used

We will not deploy our application for this tutorial.

16

Image classification

Want to know more? Check out this tutorial on
.

image
classification with PyTorch

17

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

Containers

Some information about .

Not only ...

containers

Docker

18

https://medium.com/@Edge2Ops/introduction-to-containers-b39a6559e054
https://github.com/containers/

Part 1: Define the service
First, we have to define what we want to

build.

19

Our requirements are:

a web app that runs a simple ML algorithm for
image classification.
inside a container - don't worry about it for now
time constraint (always take into account)

20

Before writing any code ...
This is an important part of our development process. If
we rush into writing the code, the risk is to waste time.

Better stop and take a moment to think what is the
structure of our application.

21

Use cases
The user should be able to classify an image.

What can the user change? What is fixed?

22

Use cases
The user should be able to classify an image.

What can the user change? What is fixed?

We decide that the user can only choose a specific
model and a specific image from a set of models and a

set of images.
22.1

Modern ML systems are very fast but...

23

Modern ML systems are very fast but...
What if classifying the image takes longer?

23.1

Modern ML systems are very fast but...
What if classifying the image takes longer?

What could go wrong in our demo?

23.2

The user expects a quick response
It's not necessary to provide the result already, but we

need to tell the user we heard the request.

24

The user expects a quick response
It's not necessary to provide the result already, but we

need to tell the user we heard the request.

Otherwise, the user might get annoyed and send
multiple requests.

24.1

The user expects a quick response
It's not necessary to provide the result already, but we

need to tell the user we heard the request.

Otherwise, the user might get annoyed and send
multiple requests.

We want to avoid that.

24.2

The user expects a quick response
It's not necessary to provide the result already, but we

need to tell the user we heard the request.

Otherwise, the user might get annoyed and send
multiple requests.

We want to avoid that.

What is the solution?

24.3

The webserver enqueues the job and returns to the
user a "ticket" for getting the results. The "ticket" will

be the ID of the job.

25

We will implement asyncronous jobs.

We create a queue, save the request, and store the
results when they are ready. We will use a simple

database for handling the queue.

26

The worker, another service of our webserver, takes
the enqueued jobs with a FIFO (First-In-First-Out)

schedule, and processes the requests.

27

Once completed, each job result is stored in the
database, with the job ID as Key for accessing the

newly-produced data.

28

29

After some (short) time, the user should be able to send
a request to the server, providing the job id, and getting

the results as a response.

30

What are the advantages of enforcing modularity?

failures are isolated to single components
scaling is easier

31

32

We can still make another improvement: pre-
downloading the images and the models.

33

We can still make another improvement: pre-
downloading the images and the models.

What pieces of our architecture should be able to
access them?

33.1

(the architecture)

34

Notice
something...

We haven't even named a single software until now...
For what is worth, our application might not even be

written in Python!

35

Now we can introduce tools can help us design and
maintain our code.

... Still no code yet!

36

Tools for developers
: service that hosts the versioned source code

of our application.
: tool for designing and documenting APIs,

using the .

GitHub

Swagger
Open API specifications

37

https://github.com/
https://swagger.io/
https://www.openapis.org/

We are not going to write the API definition in swagger,
but this is how they look like:

This is written in . We will see another one in this
lesson.

YAML

38

https://en.wikipedia.org/wiki/YAML

And we can find the APIs we have to create,
rendered by Swagger.

here

39

https://app.swaggerhub.com/apis-docs/Maupin1991/ml-server/1.0#/

Now we can start creating
our building blocks

40

Building blocks

To achieve scalability:

41

Building blocks

To achieve scalability:

a web server

41.1

Building blocks

To achieve scalability:

a web server
a queue

41.2

Building blocks

To achieve scalability:

a web server
a queue
some worker

41.3

Building blocks

To achieve scalability:

a web server
a queue
some worker

a "box"

41.4

Building blocks

To achieve scalability:

a web server
a queue
some worker

a "box"
some storage

41.5

Building blocks (with a name)
* (a web server)
 (a queue)

Python + (some worker)

To achieve isolation:

 (a "box")
 (some storage)

* Flask was used in the last years, but now FastAPI is
much more used

Flask FastAPI
Redis

PyTorch

Docker
Docker volumes

42

https://flask.palletsprojects.com/en/1.1.x/
https://fastapi.tiangolo.com/
https://redis.io/
https://pytorch.org/
https://www.docker.com/
https://docs.docker.com/storage/volumes/

43

Now let's see the architecture of our web application.

44

45

This seems a very complicated architecture, but we are
lucky! Docker has the perfect tool for this!

 interconnects several containers
through APIs.

Docker-compose

46

https://docs.docker.com/compose/

Now that we have a rough idea of what are the steps,
we can start writing some code!

47

Part 2: Getting started with
the code

48

Download the repository (run a terminal in the
directory where you want to download it, or cd into

that from your home directory):

git clone https://github.com/unica-isde/web-server-2023

49

Optional but recommended - create conda
environment:

https://docs.conda.io/projects/miniconda/en/latest/

conda create --name isde python=3.10
conda activate isde

50

https://docs.conda.io/projects/miniconda/en/latest/

Let's explore the code repository. It's a good practice to
start from the Readme.md file and the

requirements.txt. These are files that describe
what the repository is for, and what is needed to run it.

51

The requirements file is like a shopping list. We can
install all the libraries we need by typing:

This line will install the required libraries in your conda
environment.

pip install -r requirements.txt

52

Follow the remaining steps in the Readme.

53

Open the folders and files in the project and familiarize
with them.

Explore the app directory. We will just go through the
main components. This is what happens in

collaborative projects. You have to understand the
code just enough to contribute where it is needed.

54

First, we will try and run the server locally. We can just
run the command

uvicorn main:app --reload

55

We read on the terminal

This is a simple Python server running locally on our
computer. This means that there is a service that is
listening in the localhost address (127.0.0.1), port

8000, waiting for HTTP requests.

Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)

56

Now try to connect to the url from your web browser:
http://127.0.0.1:8000/

57

http://127.0.0.1:8000/

What happens when you click to the URL?

The browser is issuing a GET request to the server
(look at your terminal), and the server is returning a

python dictionary that will be encoded as JSON
automatically by FastAPI. Finally, the browser renders

the JSON as text.

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def read_root() -> str:
 """Returns the hello world first page."""
 return {"Hello": "World"}

58

What is good about FastAPI is that it creates the docs
automatically:

Check out all the description that is automatically filled
in by the framework. Take time also to test the API with

the GUI.

http://127.0.0.1:8000/docs

59

http://127.0.0.1:8000/docs

Now let's implement our first API!

We will keep it simple and just store a list of all models
and images available in our server.

60

from typing import Dict, List

@app.get("/info")
def get_info() -> Dict[str, List[str]]:
 """Returns a dictionary with the list of models and
 the list of available image files."""
 list_of_images = list_images()
 list_of_models = Configuration.models
 data = {
 "models": list_of_models,
 "images": list_of_images
 }
 return data

61

Then try to navigate to http://127.0.0.1:8000/info

62

http://127.0.0.1:8000/info

It's ugly, right*? It's because our web browser is usually
rendering HTML files rather than raw JSONS.

* except for Firefox users, that will actually see an
output formatted better than the others - but this is

just an extra service offered by the browser

63

Let's instead reply to our request with an HTML file.

64

from fastapi import FastAPI, Request

app.mount("/static", StaticFiles(directory="app/static"), name="
templates = Jinja2Templates(directory="app/templates")

@app.get("/", response_class=HTMLResponse)
def home(request: Request):
 return templates.TemplateResponse("home.html", {"request": r

65

Navigate to

Also, if you have some time, check out the HTML files
that are in the templates directory.

http://127.0.0.1:8000/

66

http://127.0.0.1:8000/

Now we can finally implement our functionality. Let's
ignore for now the fact that we have to build a queue.

67

We want the user to be able to insert data in a special
construct, that will be used to gather the input for our

service.

We should get the classification output with our
machine learning utilities:

classification_scores = classify_image(model_id=model_id, img_id

68

What can the user select?

the image
the machine learning (pretrained) model

69

We are goin to use a form. Forms can be very
customizable, and need often validation strategies to

prevent users to insert uncontrolled inputs*.

*

70

We are goin to use a form. Forms can be very
customizable, and need often validation strategies to

prevent users to insert uncontrolled inputs*.

* REMEMBER THIS WHEN YOU WORK ON THE
PROJECTS

70.1

from ast import List
from fastapi import Request

class ClassificationForm:
 def __init__(self, request: Request) -> None:
 self.request: Request = request
 self.errors: List = []
 self.image_id: str
 self.model_id: str

 async def load_data(self):
 form = await self.request.form()
 self.image_id = form.get("image_id")
 self.model_id = form.get("model_id")

 ...

71

class ClassificationForm:

 ...

 def is_valid(self):
 if not self.image_id or not isinstance(self.image_id, st
 self.errors.append("A valid image id is required")
 if not self.model_id or not isinstance(self.model_id, st
 self.errors.append("A valid model id is required")
 if not self.errors:
 return True
 return False

72

We can then create the classification request.

73

Let's have a look at the HTML in
templates/classification_select.html.

Note the images and models keys. These should be
passed by Python from the backend.

74

@app.get("/classifications")
def create_classify(request: Request):
 return templates.TemplateResponse(
 "classification_select.html",
 {"request": request, "images": list_images(), "models":
)

75

Let's now see
templates/classification_output.html

76

This file will display the scores that are passed (by the
backend, again) into the variable

data['classification_scores'].

77

@app.post("/classifications")
async def request_classification(request: Request):
 form = ClassificationForm(request)
 await form.load_data()
 classification_scores = classify_image(model_id=form.model_i
 img_id=form.image_id)
 if form.is_valid():
 data = form.__dict__
 data['classification_scores'] = classification_scores
 return templates.TemplateResponse("classification_output
 {"request": request, "

78

Try out the service now. Go to
and navigate to the classification service. Pick an image

and a model and see the results.

http://127.0.0.1:8000/

79

http://127.0.0.1:8000/

If we click on submit, the classification output should
appear in our browser as a table with the top 5 scores.

80

We won't inspect the front-end in detail, but remember
that we created a form object that is passed through
the FastAPI APIs to the HTML file we are rendering

through our browser.

81

What happens if we get many requests? What happens
if the classification takes too long to process?

82

What happens if we get many requests? What happens
if the classification takes too long to process?

If we don't send a response to users in a short time,
they can get bored with our service, or worse, send

more requests!

82.1

We can simulate a long running task by adding a line in
the classification function.

import time
time.sleep(5)

83

The solution: implement a task queue.

84

Whenever the user sends a request, the server returns
a status code. The web browser then can request the

resource after a certain amount of time, and check the
status of the queue.

85

This pattern is called , and is a mechanism that
allows Asynchronous long running operations with the

REST APIs.

polling

86

http://restalk-patterns.org/long-running-operation-polling.html

First, we have to create a queue. We can do so in our
classifications handler, and enqueue the jobs as soon as

they are requested by users.

87

Let's edit our classification API

88

 image_id = form.image_id
 model_id = form.model_id
 redis_url = Configuration.REDIS_URL
 redis_conn = redis.from_url(redis_url)
 with Connection(redis_conn):
 q = Queue(name=Configuration.QUEUE)
 job = Job.create(classify_image, kwargs={
 "model_id": model_id,
 "img_id": image_id
 })
 task = q.enqueue_job(job)
 return templates.TemplateResponse("classification_output_

@app.post("/classifications")1
async def request_classification(request: Request):2
 form = ClassificationForm(request)3
 await form.load_data()4

5
6
7
8
9

10
11
12
13
14
15
16

89

Notice that the HTML form that we are using has a
<script> tag, which is running a JavaScript

fragment. We are not going to edit that, but I will tell
you what it is going on...

90

The script is run at the first time when the HTML is
rendered. Inside that, we have a polling mechanism

that keeps asking for the resource
/classfications/{JobID} every second, until the

output JSON of the API says "status":
"success".

91

Now we should return that status and eventually the
job result in a new API called

classifications/{JobID}.

92

@app.get("/classifications/{job_id}")
def classifications_id(job_id: str):
 redis_url = Configuration.REDIS_URL
 redis_conn = redis.from_url(redis_url)
 with Connection(redis_conn):
 q = Queue(name=Configuration.QUEUE)
 task = q.fetch_job(job_id)
 print(task.result)
 response = {
 'task_status': task.get_status(),
 'data': task.result,
 }
 return response

93

Now, we should run the worker and the server
together. See also the output that they produce.

94

What is happening (1/3):

95

What is happening (1/3):
frontend (html + javascript): the user requests the
webpage.

95.1

What is happening (1/3):
frontend (html + javascript): the user requests the
webpage.

backend(python): the server returns the html with the
image and model selection.

95.2

What is happening (1/3):
frontend (html + javascript): the user requests the
webpage.

backend(python): the server returns the html with the
image and model selection.

frontend (html + javascript): the user picks the model
and the image. The web browser issues the request to
the backend server.

95.3

What is happening (2/3):

96

What is happening (2/3):
backend(python): the server receives the request and
puts the task in the queue. Returns the id of the stored
job to the browser and redirects to the results page.

96.1

What is happening (2/3):
backend(python): the server receives the request and
puts the task in the queue. Returns the id of the stored
job to the browser and redirects to the results page.

frontend (html + javascript): the web browser renders
the result page and asks for the job result. If the status
of the job is "success", the server renders the resulting
output, otherwise it waits and repeat.

96.2

What is happening (3/3):
In the meanwhile...

97

What is happening (3/3):
In the meanwhile...

the worker(python): The worker takes the tasks from
the queue and processes them, storing the result in the
database.

97.1

This service works, but of course this is not the only
requirement.

Depending on the application, we have always to add
the "implicit" requirements like security, stability and

documentation*.

* not covered in this lesson, but always keep them in
mind!

98

Containers

99

For creating a container with Docker, we use a specific
file called Dockerfile. This file is automatically

understood by Docker and it has a specific format.

We are not going to write one from scratch, but we can
inspect the one that builds our application.

100

FROM python:3.10

We copy just the requirements.txt first to leverage
Docker cache
COPY ./requirements.txt /app/requirements.txt

WORKDIR /app

RUN pip install -r requirements.txt

ADD . ./

CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"]

101

The important part here is to remember that:

we are starting from an image that already contains
Python and some other useful tools, e.g., pip.

we are leveraging Docker cache.

102

Docker cache
Docker builds intermediate containers for every line

we have in this Dockerfile.

If we change the content of one of the lines, Docker
uses the cached version of everything before the

changed line and rebuilds what comes after the line.

103

Building the container
Now let's open a terminal in the root directory, and run:

We are telling Docker to build the current directory,
and to tag the image we just created with the name

classificaion-ws.

Docker will automatically search for a file
Dockerfile in the specified directory.

docker build . -t classification-ws

104

If you haven't done it yet, remember to stop the
webserver that we were using until now. This is

because we will run the same service through the
docker container now!

105

Then, we can run the container with the command:

Note that we are specifying here a socket. This is a
mapping of a port inside the container with a port in

our computer.

So, inside our container we will run the server on port
80, which will be linked with the port 80 of our

localhost.

docker run -p 80:80 classification-ws

106

We can see that the container is running the server in
our *.

Don't run classifications there yet...

* note that port 80 is the default for the web browser

localhost port 80

107

http://localhost/

What happens when we click on "submit"?

108

We should improve our docker service a little bit, right
now it is missing the redis service, the volume, and the
worker. If we ask for a classification job now, we will be

stuck with an error...

109

Stop the container with Ctrl+C.

110

Docker compose

111

Remember the architecture? See how many containers
are there:

112

See how many containers are there now...

one for the web application
one for each worker
one for the redis database

113

If we want to define more than one container and link
them together, we should use a docker compose file.

We have one already in our root-directory. Let's
inspect that.

114

We have three blocks:

web
redis
worker

115

web:
 build: .
 command: uvicorn main:app --host 0.0.0.0 --port 80
 ports:
 - "80:80"
 links:
 - redisdb
 environment:
 - REDIS_HOST=redisdb
 - REDIS_PORT=6378
 volumes:
 - ~/.cache/torch:/root/.cache/torch

116

The web container is running the webserver on port 80.
It has a build . command that is similar to what we

just did with the standalone container, and some other
interesting keywords.

117

links defines the connection of this container with
others defined in the same dockerfile. We are

connecting this container with the one running the
database

118

environment defines environment variables, that we
can use for storing dynamic values like the redis port
and the hostname. Why is the hostname redisdb?

119

By default, docker links define an entry in the hosts file
of our containers that points to the linked containers.
So if we connect to resdisdb from inside of our web

container, we will see the localhost of the redisdb
container.

120

volumes is another interesting trick. We are mounting
a directory from our filesystem into the container's

filesystem. This means that the files located here
persist even when the container is stopped.

We are using this trick to avoid downloading models
every time we run the container.

121

Now check the remaining parts of the docker-compose
file. You should now be able to understand them.

122

redisdb:
 image: "redis"
 command: --port 6378
 ports:
 - "6378:6378"

123

worker:
 build: .
 command: python worker.py
 links:
 - redisdb
 environment:
 - REDIS_HOST=redisdb
 - REDIS_PORT=6378
 volumes:
 - ~/.cache/torch:/root/.cache/torch

124

And finally, let the magic happen! We can create our
architecture with a single line:

docker-compose build && docker-compose up

125

What is the beauty of our docker compose? First, we
can download the whole repository and install it in the

client's computer without sweating too much...

126

Moreover, we can also easily scale our service, for
example by running 2 workers instead of one!

docker-compose up --scale worker=2

127

There are other improvements that can be easily
implemented with this architecture. Can you figure out

them?

128

There are other improvements that can be easily
implemented with this architecture. Can you figure out

them?

scale web container and add load balancer

128.1

There are other improvements that can be easily
implemented with this architecture. Can you figure out

them?

scale web container and add load balancer
caching machine learning results

128.2

Summary

129

Summary
design phase of a project
frontend-backend
APIs
long running jobs and queues
containers

Questions? Send them to maura.pintor@unica.it

130

mailto:maura.pintor@unica.it

